Instructions
This is a takehome assignment I want to see what you remember about the prerequisite material in digital design. It should help you determine if you have the right background for this course.
Work independently. Show your work! Answers with no justification will not be given credit.
Don’t Panic!

<table>
<thead>
<tr>
<th></th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Electronics</td>
<td>20</td>
</tr>
<tr>
<td>2 - Arithmetic</td>
<td>20</td>
</tr>
<tr>
<td>3 - Combinational Logic</td>
<td>20</td>
</tr>
<tr>
<td>4 - timing</td>
<td>20</td>
</tr>
<tr>
<td>5 - State machine design</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
1 Basic Electronics

1.1 RC Circuits: 10 Points
Consider a switch that connects a 120v source, a 23 MΩ resistor, and a 5μF capacitor. How long should you leave the switch closed in order to charge the capacitor to 12v? Draw the circuit, set up the equation and solve for seconds.

1.2 Power: 10 Points
What is the maximum voltage that can be connected across a series combination of a 180Ω 2-watt resistor and a 120Ω 1-watt resistor with exceeding either resistor’s power rating.
2 Arithmetic: 10 Points

Compute the following additions assuming the numbers are 2’s complement numbers. Show the result, and indicate which, if any, cause overflow.

A) 10111001 B) 01011101 C) 00100110
+ 11010110 + 00100001 + 01011110
---------- ---------- ----------

D) 01001010 E) 10010110
+ 11110110 + 01001101
---------- ----------

3 Combinational Logic: 10 Points

Convert the following circuit to an equivalent circuit that uses only NAND gates. Do NOT minimize the circuit, just change the gate types. Remember that using deMorgan’s theorem $\overline{A \land B} = \overline{A} \lor \overline{B}$ which means that you can draw a NAND as an AND with inverted output or as an OR with inverted inputs.
Consider the counter circuit in the following figure (This is a synchronous counter with parallel load). Assume that T_{su} (setup time) is 3ns and T_h (hold time) is 1ns for the flip flops. Assume that T_{pd} (propogation delay) through each gate (AND, XOR, and MUX) is 1ns. What is the maximum clock frequency for which the counter will operate correctly? Why?
Finite State Machine Design: 20 Points

Design a finite state machine with one input I, and two outputs Z and E. The machine should produce a Z output whenever it has seen a 110 pattern on the input stream, except that if it ever sees a 001 pattern on the input stream, it should assert the E output, and keep that E output asserted until the machine is reset. Note that Z should never be asserted again once E is asserted. Design a state machine to implement this function. Don’t implement the circuit, just draw the state diagram for a Moore-style state machine (i.e. outputs are determined only by which state you’re in).