Bresenham Circles

CS5600 Intro to Computer Graphics
From Rich Riesenfeld
Spring 2013

More Raster Line Issues

- Fat lines with multiple pixel width
- Symmetric lines
- End point geometry – how should it look?
- Generating curves, e.g., circles, etc.
- Jaggies, staircase effect, aliasing...

Generating Circles

Exploit 8-Point Symmetry

Once More: 8-Pt Symmetry

Only 1 Octant Needed

We will generate 2nd Octant
Generating pt \((x,y)\) gives
the following 8 pts by symmetry:
\{(x,y), (-x,y), (-x,-y), (x,-y),
(y,x), (-y,x), (-y,-x), (y,-x)\}

2nd Octant Is a Good Arc

- It is a function in this domain
 - single-valued
 - no vertical tangents: \(|\text{slope}| \leq 1\)
- Lends itself to Bresenham
 - only need consider \(E\) or \(SE\)

Implicit Eq's for Circle

- Let \(F(x,y) = x^2 + y^2 - r^2\)
- For \((x,y)\) on the circle, \(F(x,y) = 0\)
- So, \(F(x,y) > 0 \Rightarrow (x,y) \text{ Outside}\)
- And, \(F(x,y) < 0 \Rightarrow (x,y) \text{ Inside}\)

Choose \(E\) or \(SE\)

- Function is \(x^2 + y^2 - r^2 = 0\)
- So, \(F(M) \geq 0 \Rightarrow SE\)
- And, \(F(M) < 0 \Rightarrow E\)
Decision Variable d

Again, we let,

$$d = F(M)$$

Look at Case 1: E

Let ideal curve:

- E
- M
- SE

Consider d_{old}:

$$d_{old} < 0 \implies E$$

Then,

$$d_{old} = F(x_p + 1, y_p - \frac{1}{2})$$

$$= (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2$$

Consider d_{new}:

$$d_{new} = d_{old} + (2x_p + 3)$$

Since,

$$d_{new} - d_{old}$$

$$= (x_p + 2)^2 - (x_p + 1)^2 = (x_p^2 + 4x_p + 4) - (x_p^2 + 2x_p + 1)$$

$$= 2x_p + 3$$

Extra Case:

If $d_{old} < 0 \implies E$

- $d_{new} = d_{old} + \Delta E$

where,

$$\Delta E = 2x_p + 3$$
Look at Case 2: SE

$$d_{old} \geq 0 \implies SE$$

$$d_{new} - d_{old} =$$

$$= (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - r^2 - [(x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2]$$

$$= (2x_p + 3) + y_p^2 - 3y_p + \frac{9}{4} - \left[y_p^2 - y_p + \frac{1}{4} \right]$$

Because, ..., straightforward manipulation

$$d_{old} \geq 0 \implies SE$$

$$d_{new} = F(x_p + 2, y_p - \frac{3}{2})$$

$$= (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - r^2$$

$$d_{new} = d_{old} + (2x_p - 2y_p + 5)$$

$$d_{old} \geq 0 \implies SE$$

$$d_{new} - d_{old} =$$

$$= (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - r^2 - [(x_p + 1)^2 + (y_p - \frac{1}{2})^2 - r^2]$$

$$= (2x_p + 3) + y_p^2 - 3y_p + \frac{9}{4} - \left[y_p^2 - y_p + \frac{1}{4} \right]$$

$$d_{old} \geq 0 \implies SE$$

$$d_{new} - d_{old} =$$

$$= (2x_p + 3) + (-3y_p + \frac{9}{4}) - (-y_p + \frac{1}{4})$$

From ΔE calculation

From new y-coordinate

From old y-coordinate
\[d_{old} \geq 0 \Rightarrow SE \]

I.e.,

\[d_{new} = d_{old} + (2x_p - 2y_p + 5) \]

\[= d_{old} + \Delta_SE \]

\[\Delta_SE = 2x_p - 2y_p + 5 \]

Note: \(\Delta \)'s Not Constant

\(\Delta_E \) and \(\Delta_SE \)

depend on values of \(x_p \) and \(y_p \)

Summary

• \(\Delta \)'s are no longer constant over entire line
• Algorithm structure is exactly the same
• Major difference from the line algorithm
 – \(\Delta \) is re-evaluated at each step
 – Requires real arithmetic

Initial Condition

• Let \(r \) be an integer. Start at \((0, r)\)
• Next midpoint \(M \) lies at \((l, r - \frac{1}{2})\)
• So, \(F(l, r - \frac{1}{2}) = 1 + (r^2 - r - \frac{1}{4})r^2 \)

\[= \frac{5}{4} - r \]

Ellipses

• Evaluation is analogous
• Structure is same
• Have to work out the \(\Delta \)'s

Getting to Integers

• Note the previous algorithm involves real arithmetic
• Can we modify the algorithm to use integer arithmetic?
Integer Circle Algorithm

- Define a shift decision variable
 \[h = d - \frac{1}{4} \]
- In the code, plug in \(d = h + \frac{1}{4} \)

Integer Circle Algorithm

- Now, the initialization is \(h = 1 - r \)
- So the initial value becomes
 \[F(1, r - \frac{1}{2}) - \frac{1}{4} = \frac{5}{4} - r - \frac{1}{4} \]
 \[= 1 - r \]

Integer Circle Algorithm

- Then, \(d < 0 \) becomes \(h < -\frac{1}{4} \)
- Since \(h \) an integer

\[h < -\frac{1}{4} \iff h < 0 \]

End of Bresenham Circles

Another Digital Line Issue

- Clipping Bresenham lines
- The integer slope is not the true slope
- Have to be careful
- More issues to follow
Line Clipping Problem

\[x = x_{\text{min}} \quad \text{Clipping Rectangle} \]

\[(x_0, y_0) \]

\[(x_1, y_1) \]

\[x = x_{\text{max}} \]

\[y = y_{\text{min}} \]

Clipped Line

\[(x_0', y_0') \]

\[(x_1', y_1') \]

\[y = y_{\text{max}} \]

\[x = x_{\text{min}} \]

\[x = x_{\text{max}} \]

Drawing Clipped Lines

\[(x_0, y_0) \]

\[(x_1, y_1) \]

Clipped Line Has Different Slope!

\[m = \frac{1}{2} \]

\[m = \frac{3}{4} \]

Pick Right Slope to Reproduce Original Line Segment

Zoom of previous situation

Pick Right Slope to Reproduce Original Line Segment

Zoom of previous situation
Clipping Against $x = x_{\text{min}}$

- Situation is complicated
- Multiple pixels involved at $(y = y_{\text{min}})$
- Want all of those pixels as “in”
- Analytic \cap, rounding x gives A
- We want point B

Clipping Against $y = y_{\text{min}}$

- Use $\text{Line} \cap y = y_{\text{min}} - \frac{1}{2}$
- Round up to nearest integer x
- This yields point B, the desired result

Jaggies-Manifestation of Aliasing

Added resolution helps, but does not directly address underlying issue of aliasing

Jaggies and Aliasing

- To represent a line with discrete pixel values is to sample finitely a continuous function
- Jaggies are visual manifestation, artifacts, resulting from information loss
- The term aliasing is a complicated, unintuitive phenomenon which will be defined later
Jaggies and Aliasing

- Doubling resolution in x and y reduces the effect of the problem, but does not fix it
- Doubling resolution costs 4 times memory, memory bandwidth and scan conversion time!

Anti-aliasing

Pixel intensity (darkness, in this case) is proportional to area covered by line

Anti-aliasing

- Set each pixel’s intensity value proportional to its area of overlap (i.e. sub-area) covered by primitive
- Not more than 1 pixel/column for lines with \(0 < \text{slope} < 1 \)

Gupta-Sproull Algorithm -1

- Standard Bresenham chooses \(E \) or \(NE \)
- Incrementally compute distance \(D \) from chosen pixel to center of line
- Vary pixel intensity by value of \(D \)
- Do this for line above and below

Gupta-Sproull Algorithm -2

- Use coarse (4-bit, say) lookup table for intensity: \(\text{Filter} (D, t) \)
- Note, \(\text{Filter} \) value depends only on \(D \) and \(t \), not the slope of line! (Very clever)
- For line-width \(t = 1 \) geometry and associated calculations greatly simplify
Cone Filter for Weighted Area Sampling

Observations

- Lines are complicated
- Many aspects to consider
- We omitted many
- What about intensity of $y = x \ vs \ y = 0$?

The End

Bresenham Circles