Boolean Gröbner Basis Reductions on Datapath Circuits using the Unate Cube Set Algebra

Utkarsh Gupta, Priyank Kalla, Vikas Rao
Electrical \& Computer Engineering, University of Utah

Abstract

Recent developments in formal datapath verification make efficient use of symbolic computer algebra algorithms for formal verification. The circuit is modeled as a set of polynomials over Boolean (or pseudo-Boolean) rings, and Gröbner basis (GB) reductions are performed over these polynomials to derive a canonical representation. GB reductions of Boolean polynomials tend to cause intermediate expression swell (term explosion problem) - often making the approach infeasible in a practical setting. To overcome these problems, this paper describes a logic synthesis analogue of GB reductions over Boolean polynomials, using the unate cube set algebra over characteristic sets. By representing Boolean polynomials as characteristic sets using Zero-suppressed BDDs (ZBDDs), implicit algorithms can be efficiently designed for GB-reduction on digital circuits. We show that imposition of circuit-topology based monomial orders on ZBDDs enables an implicit implementation of polynomial division, canceling multiple monomials in one-step. Experiments performed over various finite field arithmetic architectures demonstrate the efficiency of our algorithms and implementations as compared to conventional explicit methods.

I. Introduction

Automated formal verification and equivalence checking of arithmetic datapath circuits is challenging. Conventional verification techniques, such as those based on binary decision diagrams (BDDs) [1], And-Invert-Graph (AIG) based reductions with SAT or SMT-solvers [2], etc., are infeasible in verifying complex datapath designs. Such designs often implement algebraic computations over bit-vector operands, therefore finite integer rings [3] or finite fields [4] are considered appropriate models to devise decision procedures for verification. For this reason, the verification community has explored the use of algebraic geometry and symbolic algebra algorithms for verification. In such a setting, the circuit is modeled by way of a set of polynomials that generate an ideal, and the verification problem is formulated using Gröbner basis (GB) reduction techniques [5].
The GB problem exhibits high computational complexity. Indeed, computing a GB (using Buchberger's [6] or the F_{4} algorithm [7]) for large circuits is practically infeasible. Managing this complexity ought be a major goal of any approach.

State-of-the-art \& Limitations: Recent approaches [3] [8] have discovered that particularly for circuit verification problems, the expensive GB computation can be avoided altogether. For arbitrary combinational [3] [8] and sequential circuits [9], a specialized term order $>$ can be derived by analyzing the topology of the given circuit. This term order is derived by performing a reverse topological traversal of the circuit, and in this manuscript we refer to it as the Reverse Topological Term Order (RTTO). Imposition of RTTO $>$ on the polynomial ring renders the set of polynomials of the circuit itself a $G B$. Subsequently, the verification problems can be solved
solely by way of GB-reduction (using multi-variate polynomial division), without any need to explicitly compute a GB. The techniques of [3] [8] have been extended and improved further to verify integer arithmetic circuits. For instance, [10] and [11] get more insights from the circuit structure that dictate specific rules on the order of polynomials chosen in GB-reduction - by accounting for topological levels, reconvergent fanouts, ANDXOR gates with common inputs, etc. The authors in [12] show that the reduction process can be parallelized by performing reduction for each output bit independently.

A common theme among all these relevant works is that they move the complexity of verification from one of computing a $G B$ to that of GB-reduction (multivariate polynomial division). These will benefit greatly by a dedicated, domain-specific implementation of GB-reduction carried out on the given circuit under RTTO $>$. So far, the above techniques [3], [4], [8], [11], [10], [12] use a general-purpose polynomial division approach, together with explicit set representation, for this GB-reduction. While some of these approaches do perform the reduction in some specific ways - e.g., mimicking GB-reduction under RTTO $>$ by substitution [11], or using TEDs to perform inputoutput signature comparisons [10], or the use of F_{4}-style GBreduction on a coefficient matrix [8] - the overall concept of polynomial division is still utilized in its rudimentary form, involving iterative cancellation of monomials "1-step at a time" on explicit data-structures. We show in the sequel, that despite recent efforts, such GB-reductions can still lead to a worst-case size explosion problem.
Proposed Solution: To make this GB-reduction on circuits more efficient, this paper describes new techniques and implementations, specifically targeted for circuit verification under RTTO $>$. In particular, we make use of implicit characteristic set representation of Zero-Suppressed BDDs [13]. By analyzing the structure of ZBDDs for polynomial representation under RTTO $>$, we show how this GB-reduction can be efficiently implemented using algorithms that specifically manipulate the ZBDD graph, by interpreting Boolean polynomial manipulation as the algebra of unate cube sets.

Rationale: The algebraic objects used to model the polynomial ideals derived from digital circuits are rings of Boolean polynomials. When Boolean functions are represented in \mathbb{F}_{2} using AND/XOR expressions, and that too as a canonical Gröbner basis, the representation tends to explode. Polynomial representations employed in computer algebra tools, such as the dense-distributive data-structure of the SINGULAR computer algebra tool [14], are inefficient for this purpose. Since addition $(\bmod 2)$ and multiplication are equivalent to XOR and AND operations, respectively, GB-reduction can be viewed as a specialized AND/XOR Boolean function decomposition problem. Clearly, implicit Boolean set representations such as
decision diagrams could be employed for this purpose. The decision diagram of choice here is the ZBDD [13], because of its power to represent and manipulate sparse combinatorial problems - particularly "sets of combinations" using the unate cube set algebra framework.

Technical Contributions: We describe when and how the GB-reduction encounters a term-explosion (exponential blowup) under RTTO $>$, which cannot be easily overcome by explicit representations. We show that ZBDDs can avoid this exponential blow-up - thereby justifying their use. We describe how the rudimentary polynomial division algorithms, that iteratively cancel one monomial in every step, can be implemented on ZBDDs under RTTO $>$. Subsequently, we show that RTTO > imposes a special structure on ZBDDs that allows us to cancel multiple monomials in every step of polynomial division, thus improving GB-reduction in both space and time! Finally, experiments conducted on finite field arithmetic (crypto-circuits) benchmarks show an order of magnitude improvement using our implementation of GBreduction.

Relationship to prior work in Boolean Gröbner Basis: The symbolic algebra community has studied properties of Boolean GB [15] [16] [17]. From among these, the work of PolyBori [17] comes closest to ours, and is a source of inspiration for this work. PolyBori proposed the use of ZBDDs to compute Gröbner bases for Boolean polynomials. PolyBori is a generic Boolean GB computational engine that caters to many permissible term orders. Its division algorithm is also based on the conventional concept of canceling one monomial in every step of reduction. In contrast, our algorithms are tailored for GBreduction under the RTTO $>$. The efficiency of our approach stems from the observation that the RTTO > imposes a special structure on the ZBDDs, which allows for multiple monomials to be canceled in one division-step.

II. Preliminaries: Notation and Background

A. Computer Algebra

This section provides a brief description of the fundamental concepts of commutative algebra including polynomial rings, polynomial division, ideals, Gröbner basis and their application in verification of circuits.

Let $\mathbb{B}=\{0,1\}$ denote the Boolean domain, \mathbb{F}_{2} the finite field of 2 elements $\left(\mathbb{B} \equiv \mathbb{F}_{2}\right)$, and $R=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring over variables x_{1}, \ldots, x_{n} with coefficients in \mathbb{F}_{2}. Operations in \mathbb{F}_{2} are performed $(\bmod 2)$, so $-1=+1$ in \mathbb{F}_{2}. We will use,$+ \cdot$ to denote addition and multiplication in R, and \vee, \wedge and \oplus to denote Boolean OR, AND and XOR operations, respectively.

A polynomial $f \in R$ is written as a finite sum of terms $f=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{t} X_{t}$. Here c_{1}, \ldots, c_{t} are coefficients and X_{1}, \ldots, X_{t} are monomials, i.e. power products of the type $x_{1}^{e_{1}} \cdot x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}, e_{i} \in \mathbb{Z}_{\geq 0}$. To systematically manipulate the polynomials, a monomial order $>$ (also called a term order) is imposed on the ring such that $X_{1}>X_{2}>\cdots>X_{t}$. Subject to $>, \operatorname{lt}(f)=c_{1} X_{1}, \operatorname{lm}(f)=X_{1}, \operatorname{lc}(f)=c_{1}$, are the leading term, leading monomial and leading coefficient of f, respectively. We also denote tail $(f)=f-l t(f)=c_{2} X_{2}+\cdots+c_{t} X_{t}$.

In this work, we are mostly concerned with terms ordered lexicographically (lex).

Definition II.1. Let $f=c_{1} X_{1}+\cdots+c_{t} X_{t}$ be a polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ such that the coefficients $c_{i} \in\{0,1\}$, and monomials $X=x_{1}^{e_{1}} \cdot x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}, e_{i} \in\{0,1\}$. Then f is called a Boolean polynomial. For Boolean polynomials $\operatorname{lt}(f)=\operatorname{lm}(f)$.

A gate-level circuit can be modeled with Boolean polynomials, where every Boolean logic gate operator is mapped from \mathbb{B} to a polynomial function over \mathbb{F}_{2} :

$$
\begin{align*}
z=\neg a & \rightarrow z+a+1 \quad(\bmod 2) \\
z=a \wedge b & \rightarrow z+a \cdot b \quad(\bmod 2) \\
z=a \vee b & \rightarrow z+a+b+a \cdot b \quad(\bmod 2) \tag{1}\\
z=a \oplus b & \rightarrow z+a+b \quad(\bmod 2)
\end{align*}
$$

Polynomial Reduction via division: Let f, g be polynomials. If $l t(f)$ is divisible by $l t(g)$, then we say that f is reducible to r modulo g, denoted $f \xrightarrow{g} r$, where $r=f-\frac{l t(f)}{l t(g)} \cdot g$. Similarly, f can be reduced w.r.t. a set of polynomials $F=$ $\left\{f_{1}, \ldots, f_{s}\right\}$ to obtain a remainder r. This reduction is denoted as $f \xrightarrow{F} r$, and the remainder r has the property that no term in r is divisible by the leading term of any polynomial f_{i} in F. Algorithm 1 shows the step-by-step procedure to perform this classical reduction.

```
Algorithm 1 Multivariate Reduction of \(f\) by \(F=\left\{f_{1}, \ldots, f_{s}\right\}\)
    procedure multi_variate_division \(\left(f,\left\{f_{1}, \ldots, f_{s}\right\}, f_{i} \neq 0\right)\)
        \(u_{i} \leftarrow 0 ; r \leftarrow 0, h \leftarrow f\)
        while \(h \neq 0\) do
            if \(\exists i\) s.t. \(\operatorname{lm}\left(f_{i}\right) \mid \operatorname{lm}(h)\) then
                choose \(i\) least s.t. \(\operatorname{lm}\left(f_{i}\right) \mid \operatorname{lm}(h)\)
                \(u_{i}=u_{i}+\frac{l t(h)}{l t\left(f_{i}\right)}\)
                \(h=h-\frac{l t(h)}{l\left(t f_{i}\right)} f_{i}\)
            else
                \(r=r+l t(h)\)
                \(h=h-l t(h)\)
        return \(\left(\left\{u_{1}, \ldots, u_{s}\right\}, r\right)\)
```

The algorithm initializes h with the polynomial f and cancels its leading term by some polynomial f_{i}. If the leading term $l t(h)$ cannot be canceled by any $l t\left(f_{i}\right)$, then it is added to the final remainder r and process is repeated until all the terms in h are analyzed.
Polynomial Ideals: Given a set of polynomials $F=$ $\left\{f_{1}, \ldots, f_{s}\right\} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$, denote the ideal J generated by F as $J=\langle F\rangle=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} \cdot f_{i}: \quad h_{i} \in R\right\}$. The ideal J may have many different generators, i.e. it is possible to have $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle=\cdots=\left\langle h_{1}, \ldots, h_{r}\right\rangle$. A Gröbner basis G of ideal J is one such set of polynomials $G=G B(J)=\left\{g_{1}, \ldots, g_{t}\right\}$ that is a canonical representation of the ideal.

Definition II.2. [Gröbner Basis] [5]: For a monomial ordering $>$, a set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\}$ contained in an ideal J, is called a Gröbner basis of J iff
$\forall f \in J, f \neq 0$, there exists $i \in\{1, \cdots, t\}$ such that $\operatorname{lm}\left(g_{i}\right)$ divides $\operatorname{lm}(f)$.

Gröbner basis G of an ideal $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is computed using the Buchberger's algorithm [6]. The algorithm initializes the set G with the given generators of J i.e. $\left\{f_{1}, \ldots, f_{s}\right\}$. The algorithm is based on the computation of Spoly of pairwise combination of polynomials in G using the following formula,

$$
\begin{equation*}
\operatorname{Spoly}\left(f_{i}, f_{j}\right)=\frac{L}{l t(f)} \cdot f-\frac{L}{l t(g)} \cdot f \tag{2}
\end{equation*}
$$

where $L=\operatorname{LCM}\left(f_{i}, f_{j}\right)$. The Spoly is then reduced w.r.t. the polynomials in G : Spoly $\xrightarrow{G} h$. If h is non-zero, it is added to G. The algorithm terminates when there are no new non-zero h generated from the set G. The idea of the Spoly reductions is to cancel leading terms of polynomials $\left\{f_{i}, f_{j}\right\}$ to obtain polynomials with new leading terms which provide additional information regarding the basis.
Definition II.3. [Gröbner Basis Reduction] [5]: Let $G=$ $\left\{g_{1}, \ldots, g_{t}\right\}$ be a Gröbner basis of ideal J, and let f be another polynomial. Then the remainder r obtained by reduction of f modulo G, denoted $f \xrightarrow{G}_{+} r$, is called the Gröbner basis reduction (GBR) of f. Moreover, the remainder r so obtained by GBR of f is a canonical expression modulo G.

Proposition II.1. Given a circuit C, we can represent all the gates using (Boolean) polynomials $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ by means of Eqn. (1), s.t. ideal $J=\langle F\rangle$. Let $z_{i}, i=0, \ldots, k-1$ denote the k-bit primary output variables of the circuit. Compute a Gröbner basis $G=G B(J)=$ $\left\{g_{1}, \ldots, g_{t}\right\}$ for the polynomials of the circuit, and perform the $G B R \quad z_{i} \xrightarrow{G}+r_{i}$ for all $0 \leq i<k$. Then all r_{i} 's are a canonical representation and can be used for formal verification/equivalence checking.

This verification requires the computation of a Gröbner basis. The Buchberger's algorithm for computation of Gröbner basis has high complexity $\left(2^{(O(n))}\right.$ in our setting). The work of [8] showed that the GB computation can be avoided.

Definition II.4. [Product Criterion] [18]: For two polynomials f_{i}, f_{j} in any polynomial ring R, if the equality $\operatorname{lt}\left(f_{i}\right)$. $\operatorname{lt}\left(f_{j}\right)=L C M\left(l t\left(f_{i}\right), l t\left(f_{j}\right)\right)$ holds, then $\operatorname{Spoly}\left(f_{i}, f_{j}\right) \xrightarrow{G} 0$.

Using this criterion we can say that when the leading terms of all polynomials in the basis $F=\left\{f_{1}, \ldots, f_{s}\right\}$ are relatively prime, then F is already a Gröbner basis $(F=G B(J))$. For a combinational circuit C, a term order $>$ can be derived by analyzing the circuit topology which ensures this property is true [3] [8]:

Proposition II.2. (From [8]) Let C be any arbitrary combinational circuit. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ denote the set of all variables (signals) in C. Starting from the primary outputs, perform a reverse topological traversal of the circuit and order the variables such that $x_{i}>x_{j}$ if x_{i} appears earlier in the reverse topological order. Impose a lex term order $>$ to represent each gate as a polynomial f_{i}, s.t. $f_{i}=x_{i}+\operatorname{tail}\left(f_{i}\right)$. Then the set of all polynomials $\left\{f_{1}, \ldots, f_{s}\right\}$ forms a Gröbner basis G, as $\operatorname{lt}\left(f_{i}\right)=x_{i}$ and $\operatorname{lt}\left(f_{j}\right)=x_{j}$ for $i \neq j$ are relatively prime. This
term order $>$ is called the Reverse Topological Term Order (RTTO).

Subsequently, by imposing RTTO on the polynomials of the circuit, the explosive GB computation is avoided, and verification is performed by the canonical GB-reduction: $z_{i} \xrightarrow{G}+r_{i}$.

Fig. 1: A 2-bit modulo Multiplier circuit.

$$
\begin{gathered}
f_{1}: c_{0}+a_{0} \cdot b_{0}, \operatorname{lm}=c_{0} ; \quad f_{2}: c_{1}+a_{0} \cdot b_{1}, \quad l m=c_{1} \\
f_{3}: c_{2}+a_{1} \cdot b_{0}, \operatorname{lm}=c_{2} ; \quad f_{4}: c_{3}+a_{1} \cdot b_{1}, \operatorname{lm}=c_{3} \\
f_{5}: r_{0}+c_{1}+c_{2}, \operatorname{lm}=r_{0} ; \quad f_{6}: z_{0}+c_{0}+c_{3}, \operatorname{lm}=z_{0} \\
f_{7}: z_{1}+r_{0}+c_{3}, l m=z_{1}
\end{gathered}
$$

Fig. 2: Polynomials of the circuit under RTTO constitute a GB.
Example II.1. Demonstration of the approach: Consider the circuit given in Fig. 1. Impose RTTO on the circuit. The primary outputs z_{0}, z_{1} are both at level-0, variables r_{0}, c_{0}, c_{3} are at level-1, c_{1}, c_{2} are at level-2, and the primary inputs $a_{0}, a_{1}, b_{0}, b_{1}$ are at level-3. Order the variables $\left\{z_{0}>z_{1}\right\}>$ $\left\{r_{0}>c_{0}>c_{3}\right\}>\left\{c_{1}>c_{2}\right\}>\left\{a_{0}>a_{1}>b_{0}>b_{1}\right\}$. Using this variable order, we impose a lex term order on the monomials. Then all the polynomials extracted from the circuit have relatively prime leading terms, as shown in Fig. 2, and $F=\left\{f_{1}, \ldots, f_{7}\right\}$ forms a $G B$.

Then the GBRs $z_{1} \xrightarrow{F}_{+} a_{0} \cdot b_{0}+a_{1} \cdot b_{1}$ and $z_{0} \xrightarrow{F}_{+} a_{0} \cdot b_{1}+$ $a_{1} \cdot b_{0}+a_{1} \cdot b_{1}$ are canonical expressions of the output bits.

B. Unate Cube Sets \& Boolean Polynomials

A Boolean variable represents a dimension of the Boolean space \mathbb{B}^{n}, a literal is an instance of a variable x_{i} or its complement $\neg x_{i}$. A cube is a product of literals which denotes a set of points in the Boolean space. A cube set consists of a number of cubes, each of which is a combination of literals. Unate cube sets allow the use of only positive literals, not negative/complemented literals. Each cube in a unate cube set represents a combination, and each literal represents an object selected in the combination.

When cube sets are used to represent Boolean functions, they are usually binate cube sets containing negative literals. In binate cube sets, literals x_{i} and $\neg x_{i}$ represent $x_{i}=1$ and $x_{i}=0$, respectively; while the absence of a literal implies a don't care. In unate cube sets, literal x_{i} implies $x_{i}=1$ whereas its absence implies $x_{i}=0$. For example, the cube set $\{a, b c\}$ represents $(a b c):\{111,110,101,100,011\}$ in the binate cube set representation, whereas it represents $(a b c):\{100,011\}$ in the unate cube set representation.

Each monomial of a Boolean polynomial can be viewed as a unate cube - a product of positive literals - and a Boolean polynomial as a unate cube set. Then the GBR $z_{i} \xrightarrow{G} r_{i}$ can be interpreted as algebra over unate cube sets, resembling a classical logic synthesis problem, as shown below. Let us (re)consider the one-step division for Boolean polynomials: $f \xrightarrow{g} r$. This division is implemented as:

$$
\begin{align*}
f \xrightarrow{g} r & =f-\frac{\operatorname{lt(f)}}{\operatorname{lt(g)}} \cdot g=f-\frac{\operatorname{lm}(f)}{\operatorname{lm}(g)} \cdot g \tag{3}\\
& =f+\frac{\operatorname{lm}(f)}{\operatorname{lm}(g)} \cdot g=f \oplus \frac{\operatorname{lm}(f)}{\operatorname{lm}(g)} \wedge g
\end{align*}
$$

We can replace $l t(f)$ with $\operatorname{lm}(f)$ as coefficients are either 0 or 1 . Notice that $\frac{\operatorname{lm}(f)}{\operatorname{lm}(g)}$ is a unate product of literals. i.e. a unate cube. The \oplus operation cancels common cubes from f and $\frac{\operatorname{lm}(f)}{\operatorname{lm}(g)} \cdot g$.

C. Zero Suppressed Binary Decision Diagrams (ZBDDs)

A ZBDD [13] can be obtained from a BDD by eliminating all the nodes whose 1 -edge points to 0 terminal node and by sharing all the isomorphic sub-graphs for two nodes. Given the order of the variables, a ZBDD represents a Boolean function canonically.

Fig. 3: ZBDD for the polynomial $r_{1}=y d+y+d$.
In [19] Minato demonstrated that ZBDDs are an efficient data-structure for implicit manipulation (algebra) of unate cube sets. Fig. 3 is a ZBDD for the unate cube set $\{y d, y, d\}$ with the variable order $y>d$. The paths beginning from the root node y and terminating in the 1-terminal node are the cubes of the set. A variable is in a cube if its 1-edge is in the path and is not in the cube if its 0 -edge is in the path. The ZBDD can also be interpreted as a polynomial $r_{1}=y d+y+d$ where the monomials can obtained the same way we obtain the cubes for the equivalent set.

Based on the above discussion, we will: i) model GBR as the algebra of unate cube sets; ii) use ZBDDs as the implicit datastructure for this GBR; and iii) devise efficient implementation of the GBR by exploiting the special structure imposed by RTTO on the ZBDD graph. For details on the use of unate cube set algebra in classical logic synthesis, and its implementation on ZBDDs, we refer the reader to [13] [19].

III. Theory and Algorithms

Consider the circuit in Fig. 4, impose RTTO: lex term order with variable ordering as, $z>y>x>d>c>b>a$. The Boolean polynomials for the circuit are: $f_{1}=z+y \cdot d+y+$ $d, f_{2}=y+x \cdot c+x+c, f_{3}=x+b \cdot a+b+a$. Under RTTO,

Fig. 4: A chain of OR gates.
f_{1}, f_{2}, f_{3} forms a GB $G=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$. For verification, we have to reduce the output z modulo G. A classical symbolic algebra reduction using an explicit representation is carried out as:

$$
\begin{aligned}
& \text { 1) } z \xrightarrow{f_{1}} y d+y+d \\
& \text { 2) } y d+y+d \xrightarrow{f_{2}} y+x d c+x d+d c+d \xrightarrow{f_{2}} x d c+x d+x c+x+d c+ \\
& d+c \\
& \text { 3) } x d c+x d+x c+x+d c+d+c \xrightarrow{f_{3}} x d+x c+x+d c b a+d c b+ \\
& d c a+d c+d+c \xrightarrow{f_{3}} x c+x+d c b a+d c b+d c a+d c+d b a+d b+ \\
& d a+d+c \xrightarrow{f_{3}} x+d c b a+d c b+d c a+d c+d b a+d b+d a+d+ \\
& c b a+c b+c a+c \xrightarrow{f_{3}} d c b a+d c b+d c a+d c+d b a+d b+d a+ \\
& d+c b a+c b+c a+c+b a+b+a=r
\end{aligned}
$$

In the first step, z is reduced by f_{1} just once as that's the only term. In the second step, the result of step one is reduced twice by f_{2} as the result has two terms containing variable y. Similarly, four reductions by f_{3} are required to reduce the result of step two into an expression containing only primary inputs (which cannot be reduced further).

Observations: i) Notice that the size of the final remainder corresponds to that of the worst case of a Boolean polynomial: i.e. r contains $2^{n}-1(=15)$ monomial terms for $n(=4)$ variables. ii) Classical division algorithms reduce the polynomials 1-step at a time, where only one monomial is canceled in each step. iii) The number of 1 -step reductions can increase exponentially as GBR progresses across the circuit.

It is clear that any data-structure that explicitly represents each monomial will encounter space and time explosion: this includes the dense-distributive representation of SINGULAR computer algebra tool [14], or the ones used by [10], [11]. The F_{4}-style polynomial reduction of [8], [4] simulates division on a matrix M representing the problem. However, each column of M corresponds to monomial generated in the division process, therefore [8], [4] also encounter this size explosion.

The use of ZBDDs can help overcome this explosion. Fig. 5 shows the same reduction of z by f_{1}, f_{2}, f_{3} using ZBDDs (exact procedure discussed later). The size of the ZBDDs after complete reduction by f_{1}, f_{2}, f_{3} increases linearly in the number of nodes. Subsequently, the final remainder has $2 \cdot n-1(=7)$ nodes (excluding the terminal 1 and 0 nodes) for $n(=4)$ variables.

ZBDD Representation: The following steps describe the procedure for building ZBDDs for the polynomials of the gates of circuits.

1) Obtain the RTTO for the variables (signals) of the circuits as $x_{1}>x_{2}>\cdots>x_{n}$.
2) Impose the same order on the ZBDDs.
3) Declare ZBDDs for each of these variables.
4) Use Eqn. (1) to model the gates of the circuit as Boolean polynomials. Build ZBDDs for these polynomials using the + and \cdot binary operations for modulo 2 sum and product of variables. The + operation can be implemented as $f+g=f \cup g-f \cap g$. However, in order to avoid the large

Fig. 5: Reduction of output of the circuit in Fig. 4 by f_{1}, f_{2}, f_{3}.
intermediate ZBDDs for the union we have implemented this operation as presented in Algorithm 1 in [17].
5) Traversing only the solid edges from the root node of a ZBDD to terminal $\mathbf{1}$ delivers the leading monomial of that polynomial. The child node of the root at the solid edge's end will be referred to as then and the other child as else.

Once the ZBDDs for the circuit have been built and stored in G, we need to perform the reduction $z_{i} \xrightarrow{G}+r_{i}$ for each output bit z_{i}. The polynomial r_{i} will be a canonical representation of z_{i} in terms of primary inputs only.

Consider the step 2 of division corresponding to Fig. 4, where the polynomial $r_{1}=y d+y+d$ needs to be reduced by f_{2}. The ZBDDs for r_{1} and f_{2} are shown in Fig. 6. Checking if $l t\left(f_{2}\right)$ divides $l t\left(r_{1}\right)$ becomes trivial as we just need to compare the indices (each variable has a unique index) of top-most nodes of ZBDDs for the polynomials r_{1} and f_{2}, which in this case are equal. Recall from Proposition II. 2 that the $l t\left(f_{i}\right)$ of the polynomials for gates of the circuit will always be x_{i}.

Division with ZBDDs: Cancel 1 monomial in every step

The algorithm for conventional reduction procedure using ZBDDs is shown in Algorithm 2. The input parameters are the ZBDD of the output bit of the circuit z_{i} and poly_list containing the ZBDDs for the set of polynomials corresponding to the gates of the circuit. The algorithm is based on the classical division procedure (Algorithm 1).

Due to RTTO, the circuit polynomials for each gate are represented as $f_{1}=x_{1}+\operatorname{else}\left(f_{1}\right), \ldots, f_{s}=x_{s}+\operatorname{else}\left(f_{s}\right)$ with variable order $x_{1}>\cdots>x_{s}>\cdots>x_{n}$ (Prop. II.2). Note that the variables $\left\{x_{s+1}, \ldots, x_{n}\right\}$ are primary inputs and are not the output of any logic gate. Then the elements in poly_list are ordered $f_{1}>f_{2}>\cdots>f_{s}$ i.e. poly_list $[1]=f_{1}$, poly_list $[2]=$ f_{2} and so on. Populating poly_list in this way avoids the search (Line 4, Algorithm 1) required to find a polynomial $g \in$ poly_list that can divide the leading term of z_{i}. While iterating over the polynomials $g \in$ poly_list if a certain polynomial does not divide the leading term of z_{i}, it will imply the polynomial is not in the logical cone of z_{i}.

The procedure leading_term (g) returns the leading term of the ZBDD representation of polynomial g. If g divides f, then the procedure $Z B D D_{\text {_ }} \operatorname{Divide}(f, g)$ (performs cube division) returns the quotient of the division, else it returns zero. Line 8 iteratively computes $z_{i}=z_{i}+\frac{l t\left(z_{i}\right)}{l t(g)} \cdot g$. The polynomial z_{i} is completely reduced w.r.t. the polynomial g in the while loop.

Fig. 6: ZBDDs for polynomial r_{1} and f_{2}.

```
Algorithm 2 Reduction: Cancel 1 monomial every iteration
    procedure single_mon_red (zi, poly_list)
        for each \(g \in\) poly_list do
            lead_g = leading_term \((g)\)
            lead_zi \(=\) leading_term \(\left(z_{i}\right)\)
            quotient \(=Z B D D \_\)Divide \((\)lead_zi,, lead_g \()\)
            while quotient \(\neq\) zero do
                    prod \(=\) quotient \(\cdot g\)
                    \(z_{i}=z_{i}+\) prod
                    lead_zi \(=\) leading_term \(\left(z_{i}\right)\)
                        quotient \(=Z B D D_{-}\)Divide \((\)lead_zi,, lead_g)
        return \(z_{i}\)
```

Improved Reduction: Cancel multiple monomials in 1 step: Next, we will show how z_{i} can be reduced by a polynomial g in one step. In the example of Fig. 5, the primary output z is reduced by f_{1} to get r_{1}. The next step is to reduce r_{1} by f_{2} to get r_{2}. To demonstrate our approach we will show how the reduction of r_{1} by f_{2} can be achieved in one step.
The polynomial $r_{1}=y d+y+d$ can be written as $y \cdot(d+$ $1)+d$. If we perform 1-step reduction of r_{1} by f_{2} we get the quotient $d+1$. This quotient is visible as the polynomial represented by the then-node of r_{1} (Fig. 6). So the reduction can be performed by multiplying $d+1$ with f_{2} and adding this product to $r_{1}(\bmod 2)$:

$$
\begin{aligned}
& (y d+y+d)+(d+1) \cdot(y+x c+x+c) \quad(\bmod 2) \\
& =2 \cdot(y d+y)+d+(d+1) \cdot(x c+x+c) \quad(\bmod 2) \\
& =d+(d+1) \cdot(x c+x+c) \quad(\bmod 2)
\end{aligned}
$$

Notice that else $\left(r_{1}\right)=d$ and else $\left(f_{2}\right)=x c+x+c$. In addition, we know that $2 \cdot(f d+f)(\bmod 2)$ is going to be zero. Therefore, in order to reduce number of operations, we directly
use the last step as a formula for reduction:

$$
\begin{aligned}
& r_{1} \xrightarrow{f_{2}} \\
&+=d+(d+1) \cdot(x c+x+c) \\
& \text { else }\left(r_{1}\right)+\operatorname{then}\left(r_{1}\right) \cdot \operatorname{else}\left(f_{2}\right)
\end{aligned}
$$

So the reduction process effectively involves just two operations, a modulo 2 sum and a product. This has the effect of canceling all the terms in r_{1} that can be canceled by $l t\left(f_{2}\right)$ in one-go, implicitly canceling multiple monomials in one step.

The algorithm for Multiple Monomial Reduction is shown in Algorithm 3, where the notations, z_{i} and poly_list, are same as in Algorithm 2. Unlike in Algorithm 2, however, where we need to find the quotient of lead_zi/lead $_g$, Algorithm 3 only determines if lead $_g$ can divide z_{i} at all (in this case the quotient is then $\left(z_{i}\right)$). This can be accomplished by just comparing the indices of top-most nodes of z_{i} and g. This algorithm significantly reduces the number of iterations, which now exactly equals the size of poly_list. For the example of Fig. 4, the number of iterations is 3 using Algorithm 3, whereas 7 iterations are required using Algorithm 2.

```
Algorithm 3 Reduction: Cancel multiple monomials
    procedure multi_mon_red(z, poly_list)
        for each \(g \in\) poly_list do
            if index \((g)=\operatorname{index}(z)\) then
                \(z=\) else \((z)+\) then \((z) \cdot\) else \((g)\)
        return \(z\)
```

We have implemented the above GBR procedures directly using the CUDD package [20]. The circuit under verification is analyzed, RTTO based variable order is imposed on the ZBDDs, and the Boolean polynomials of the circuit are represented as unate cube sets. The polynomials of of the gates of circuit, $f_{i} \in G$, are inserted in poly_list according to the variable order $x_{1}>\cdots>x_{i}>\cdots>x_{n}$, where $f_{i}=x_{i}+\operatorname{else}\left(f_{i}\right)$ (this is due to Prop. II.2). To perform GBR $z_{i} \xrightarrow{G}+r_{i}$ Algorithm 3 is invoked to obtain the remainder.

IV. EXPERIMENTAL RESULTS

This section presents the results of using our implementation (Algorithm 3) for reducing circuits used in cryptography. We compare our results against F4-style reduction [4], parallelized approach for performing reductions on Galois field multipliers [12], and PolyBori [17] that uses the conventional reduction procedure on top of ZBDDs. The experiments are performed on a 3.5 GHz Intel Core ${ }^{\mathrm{TM}}$ i7-4770K Quad-Core CPU with 32 GB of RAM.

A. Mastrovito Multipliers

Modular multiplication is an important computation used in cryptography. A Mastrovito multiplier architecture can be employed for performing this computation. Mastrovito multipliers compute $Z=A \times B(\bmod P)$ where P is a given primitive polynomial for the datapath size k.

The product $A \times B$ is computed using an array multiplier architecture, and then the result is reduced modulo P. The following example demonstrates the Mastrovito multiplier computation [8].

Example IV.1. Consider the field $\mathbb{F}_{2^{4}}$. Let the inputs be: $A=$ $a_{0}+a_{1} \cdot \alpha+a_{2} \cdot \alpha^{2}+a_{3} \cdot \alpha^{3}$ and $B=b_{0}+b_{1} \cdot \alpha+b_{2} \cdot \alpha^{2}+$ $b_{3} \cdot \alpha^{3}$, and the irreducible polynomial be $P(x)=x^{4}+x^{3}+1$. The coefficients of $A=\left\{a_{0}, \ldots, a_{3}\right\}, B=\left\{b_{0}, \ldots, b_{3}\right\}$ are in $\mathbb{F}_{2}=\{0,1\}$. First, we perform the multiplication as:

			a_{3}	a_{2}	a_{1}
\times		b_{3}	b_{2}	a_{0}	b_{0}
		$a_{3} \cdot b_{0}$	$a_{2} \cdot b_{0}$	$a_{1} \cdot b_{0}$	$a_{0} \cdot b_{0}$
	$a_{3} \cdot b_{1}$	$a_{2} \cdot b_{1}$	$a_{1} \cdot b_{1}$	$a_{0} \cdot b_{1}$	
$a_{3} \cdot b_{3}$	$a_{2} \cdot b_{3}$	$a_{1} \cdot b_{2}$	$a_{1} \cdot b_{2}$	$a_{0} \cdot b_{2} \cdot b_{3}$	
s_{6}	s_{5}	s_{4}	s_{3}	s_{2}	s_{1}

The result Sum $=s_{0}+s_{1} \cdot \alpha+s_{2} \cdot \alpha^{2}+s_{3} \cdot \alpha^{3}+s_{4} \cdot \alpha^{4}+s_{5}$. $\alpha^{5}+s_{6} \cdot \alpha^{6}$, where, $s_{0}=a_{0} \cdot b_{0}, \quad s_{1}=a_{0} \cdot b_{1}+a_{1} \cdot b_{0}, \quad s_{2}=$ $a_{0} \cdot b_{2}+a_{1} \cdot b_{1}+a_{2} \cdot b_{0}$, and so on. Here the multiply "." and add "+" operations are performed modulo 2, and hence implemented in a circuit using AND and XOR gates. As the coefficients are always reduced modulo $p=2$, there are no carry-chains in the design. Next, the result is reduced modulo the primitive polynomial $P(x)=x^{4}+x^{3}+1$, as:

$$
\begin{array}{|cccc|l}
s_{3} & s_{2} & s_{1} & s_{0} & \\
\hline s_{4} & 0 & 0 & s_{4} & s_{4} \cdot \alpha^{4}(\bmod P(\alpha))=s_{4} \cdot\left(\alpha^{3}+1\right) \\
s_{5} & 0 & s_{5} & s_{5} & s_{5} \cdot \alpha^{5}(\bmod P(\alpha))=s_{5} \cdot\left(\alpha^{3}+\alpha+1\right) \\
s_{6} & s_{6} & s_{6} & s_{6} & s_{6} \cdot \alpha^{6}(\bmod P(\alpha))=s_{6} \cdot\left(\alpha^{3}+\alpha^{2}+\alpha+1\right) \\
\hline z_{3} & z_{2} & z_{1} & z_{0} &
\end{array}
$$

The final output of the circuit is: $Z=z_{0}+z_{1} \alpha+z_{2} \alpha^{2}+z_{3} \alpha^{3}$; where $z_{0}=s_{0}+s_{4}+s_{5}+s_{6} ; \quad z_{1}=s_{1}+s_{5}+s_{6} ; \quad z_{2}=s_{2}+$ $s_{6} ; \quad z_{3}=s_{3}+s_{4}+s_{5}+s_{6}$.

Table I provides the results for the reductions $z_{i} \stackrel{G}{\rightarrow}_{+} r_{i}$ for Mastrovito multipliers for each output bit z_{i}. The benchmarks are taken from [8] which are optimized using ABC [21] with the same commands and library as mentioned in [12]. Algorithm 3 reduces each output bit independent of other bits. Therefore, we have presented the results obtained by running our reduction algorithm both parallely and sequentially for each output bit. Similarly, the results for implementation in PolyBori are also presented for both cases. The maximum number of parallel processes is decided by the memory usage of each process (i.e. reducing one bit) for our implementation and the total available memory. The larger benchmarks are run with fewer parallel processes as they consume more memory.

In the table, the column \#T represents the number of parallel processes. (S) and (P) refer to the cases when the experiments are run sequentially and parallely for the output bits z_{i}, respectively.

TABLE I: Mastrovito Multipliers (Time in seconds); $\mathrm{k}=$ Datapath Size, \#Gates = No. of gates, \#T = No. of threads, Time-Out $=30 \mathrm{hrs}$, (P) : Parallel Execution, (S): Sequential Execution, $\mathrm{K}=10^{3}, \mathrm{M}=10^{6}$, PB : PolyBori, ZR: Algorithm 3

\mathbf{k}	\#Gates	$\mathbf{F 4}[\mathbf{4}]$	\#	[\mathbf{12}](\mathbf{P})	$\mathbf{P B}$		ZR	
					$\mathbf{(P)}$	$\mathbf{(S)}$	$\mathbf{(P)}$	$\mathbf{(S)}$
64	11.5 K	1.3	20	3.70	3.60	2.21	0.73	$\mathbf{0 . 2 7}$
128	46 K	9.89	20	27.54	23.99	16.76	5.08	$\mathbf{1 . 6 3}$
163	73.5 K	32.61	20	55.96	48.67	33.72	11.41	$\mathbf{3 . 1 1}$
233	122 K	86.30	20	127.61	112.96	77.23	21.77	$\mathbf{3 . 6 3}$
283	193 K	274.68	20	253.05	227.77	157.45	49.89	$\mathbf{1 1 . 4 1}$
409	386 K	$2,528.48$	10	716.80	659.64	426.92	163.52	$\mathbf{1 7 . 6 8}$
571^{*}	1.6 M	TO	3	5,331	CR	CR	$2,126.65$	$\mathbf{5 6 6 . 3 9}$

The 571-bit multiplier could not be synthesized and mapped with the given memory. Therefore, we have provided results for a structured (but not optimized) 571-bit multiplier benchmark. Our implementation outperforms the explicit approaches of [4] and [12] for Mastrovito multipliers. For the 571-bit multiplier, the implementation of [4] does not finish for the given time period of 30 hours and the PolyBori implementation crashes (CR).
An interesting point to note in the Table I is that our implementation takes less time when we are running it sequentially. There is a certain overhead involved when we declare variables and build ZBDDs for each gate of the circuit. In the case of Mastrovito multipliers benchmarks, this overhead is substantially greater than the reduction time for each output bit. Therefore, when we run these benchmarks parallely this overhead time hampers the overall run time.

B. Montgomery Multipliers

Exponentiation (repeated multiplication) is often required in cryptosystems. For such applications, Montgomery architecture [22] [23] [24] are considered more efficient than Mastrovito multipliers as they do not require explicit reduction modulo P after each step. Fig. 7 shows the structure of a Montgomery multiplier. Each MR block computes $A \cdot B \cdot R^{-1}$, where R is selected as a power of a base $\left(\alpha^{k}\right)$ and R^{-1} is the multiplicative inverse of R in $\mathbb{F}_{2^{k}}$. As this operation cannot compute $A \cdot B$ directly, we need to pre-compute $A \cdot R$ and $B \cdot R$ as shown in the Fig. 7. We denote the leftmost two blocks as Block A (upper) and B (lower), the middle block as Block C and the output block as Block D.

Fig. 7: Montgomery multiplication.

Table II provides the results for flattened (bit-blasted) and optimized Montgomery multipliers for the sequential and parallel executions. The 571-bit benchmark in the table is an unoptimized structured benchmark. We again get a significant improvement over the explicit approaches except for the case of 283 bit multiplier.

TABLE II: Montgomery Multipliers (Time in seconds); $\mathrm{k}=$ Datapath Size, \#Gates = No. of gates, \#T = No. of threads, Time-Out $=30$ hrs, (P) : Parallel Execution, (S) : Sequential Execution, $\mathrm{K}=10^{3}, \mathrm{M}=10^{6}$, PB : PolyBori, ZR : Algorithm 3

\mathbf{k}	\#Gates	$\mathbf{F 4}[\mathbf{4}]$	\#T	$\mathbf{1 2] (\mathbf { P })}$	PB		ZR	
					$\mathbf{(P)}$	$\mathbf{(S)}$	$\mathbf{(P)}$	$\mathbf{(S)}$
64	9.5 K	16.29	20	10.69	6.27	9.22	$\mathbf{3 . 7 5}$	8.37
128	35 K	621.90	20	36.19	28.93	34.59	$\mathbf{1 3 . 7 6}$	24.73
163	56.5 K	$2,608.4$	20	204.94	167.73	335.24	$\mathbf{1 4 1 . 6 8}$	321.60
233	111 K	385.92	20	132.51	119.77	99.36	42.16	$\mathbf{3 1 . 8 8}$
283	165 K	5,344	20	$\mathbf{7 0 4 . 1 3}$	$1,194.2$	$2,078.1$	$1,065.3$	$2,113.0$
409	340 K	7,104	10	697.91	737.23	722.05	303.91	$\mathbf{2 9 9 . 9 2}$
571^{*}	1.97 M	TO	3	TO	CR	CR	$\mathbf{4 3 , 8 1 3}$	99,042

Table III presents the statistics for hierarchical Montgomery multipliers for the blocks $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . The experiment first reduces the outputs of a block modulo the gates of that block, and then reduces the primary outputs modulo these four sets of remainders (ZBDDs), thus exploiting the hierarchy of these circuits. Table III shows the time for reduction of each block and the time for reducing the primary outputs across the four levels. The time for reducing the primary outputs across levels in case of F4 implementation is <1 second, and is not explicitly mentioned in the table. The row labeled Total presents the sum of time of reduction across levels and the maximum reduction time for each block (as the reductions for the four levels are independent of each other).

TABLE III: Montgomery Blocks (Time in seconds); $\mathrm{k}=$ Datapath Size, \#Gates = No. of gates, Time-Out = 30 hrs , Red. $=$ time for reduction, Coll. $=$ time to reduce across the 4 levels. $\mathrm{K}=10^{3}, \mathrm{M}=10^{6}$, PB : PolyBori, ZR: Algorithm 3

k	\#Gates	Block	F4 [4]	PB			R
k	\#Gates	Block	F4 [4]	Red.	Coll.	Red.	Coll.
163	33K	Block A	25	12	16	1	18
	33K	Block B	25	12		1	
	85K	Block C	73	18		7	
	32K	Block D	24	12		1	
	Total		73	34		25	
233	55K	Block A	142	32	5	0.14	4
	55K	Block B	141	33		0.14	
	163 K	Block C	408	34		2.1	
	54K	Block D	140	32		0.13	
	Total		408	39		6.1	
283	82K	Block A	330	79	26	24	90
	82K	Block B	329	78		23	
	241K	Block C	883	173		118	
	81K	Block D	321	80		23	
	Total		883	199		208	
409	168 K	Block A	1,322	177	28	0.57	29
	168 K	Block B	1,335	175		0.57	
	502K	Block C	4,471	192		14	
	168 K	Block D	1,338	176		0.56	
	Total		4,471	220		43	
571	330 K	Block A	5,371	769	1,341	321	1,412
	330K	Block B	5,421	747		332	
	980 K	Block C	37,804	3,605		3026	
	328 K	Block D	5,539	751		338	
		tal	37,804	4,94			338

C. Point Addition over Elliptic Curves

Point addition is an important operation required for the task of encryption, decryption and authentication in Elliptic Curve Cryptography (ECC). Modern approaches represent the points in a projective coordinate systems, e.g., the López-Dahab (LD) projective coordinate [25] due to which the point addition operation can be implemented as polynomials in the field.

Example IV.2. Consider point addition in López-Dahab (LD) projective coordinate. Given an elliptic curve: $Y^{2}+X Y Z=$ $X^{3} Z+a X^{2} Z^{2}+b Z^{4}$ over $\mathbb{F}_{2^{k}}$, where X, Y, Z are k-bit vectors that are elements in $\mathbb{F}_{2^{k}}$ and similarly, a, b are constants from the field. We represent point addition over the elliptic curve as $\left(X_{3}, Y_{3}, Z_{3}\right)=\left(X_{1}, Y_{1}, Z_{1}\right)+\left(X_{2}, Y_{2}, 1\right)$. Then X_{3}, Y_{3}, Z_{3} can be computed as follows:

REFERENCES

$$
\begin{array}{ll}
A=Y_{2} \cdot Z_{1}^{2}+Y_{1} & B=X_{2} \cdot Z_{1}+X_{1} \\
C=Z_{1} \cdot B & D=B^{2} \cdot\left(C+a Z_{1}^{2}\right) \\
Z_{3}=C^{2} & E=A \cdot C \\
X_{3}=A^{2}+D+E & F=X_{3}+X_{2} \cdot Z_{3} \\
G=X_{3}+Y_{2} \cdot Z_{3} & Y_{3}=E \cdot F+Z_{3} \cdot G
\end{array}
$$ 1986.

[2] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, "Improvements (ICCAD), 2006, pp. 836-843.
[1] R. E. Bryant, "Graph Based Algorithms for Boolean Function Manipulation," IEEE Trans. on Computers, vol. C-35, pp. 677-691, August to Combinational Equivalence Checking," in Proc. Intl. Conf. on CAD
[3] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Gruel, "An Algebraic Approach to Proving Data Correctness in Arithmetic Datapaths," in Computer Aided Verification Conference, 2008, pp. 473-486.
[4] T. Pruss, P. Kalla, and F. Enescu, "Efficient Symbolic Computation for Word-Level Abstraction from Combinational Circuits for Verification over Finite Fields," IEEE Trans. on CAD, vol. 35, no. 7, pp. 1206-1218, July 2016.
[5] W. W. Adams and P. Loustaunau, An Introduction to Grobner Bases. American Mathematical Society, 1994.
[6] B. Buchberger, "Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal," Ph.D. dissertation, Philosophiesche Fakultat an der Leopold-FranzensUniversitat, Austria, 1965.
[7] Faugère, "A new efficient algorithm for computing Gröbner bases (F_{4})," Journal of Pure and Applied Algebra, vol. 139, pp. 61-88, June 1999.
[8] J. Lv, P. Kalla, and F. Enescu, "Efficient Gröbner Basis Reductions for Formal Verification of Galois Field Arithmetic Circuits," in IEEE Trans. on $C A D$, vol. 32, no. 9, 2013, pp. 1409-1420.
[9] X. Sun, P. Kalla, and F. Enescu, "Word-level Traversal of Finite State Machines using Algebraic Geometry," in Proc. High-Level Design Validation and Test, 2016.
[10] M. Ciesielski, C. Yu, D. Liu, W. Brown, and A. Rossi, "Verification of Gate-Level Arithmetic Circuits by Function Extraction," in Proc. Des. Auto. Conf. (DAC), 2015.
[11] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler, "Formal verification of integer multipliers by combining gröbner basis with logic reduction," in Proc. Design Automation and Test in Europe, 2016, pp. 1048-1053.
[12] C. Yu and M. Ciesielski, "Efficient parallel verification of galois field multipliers," in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Jan 2017, pp. 238-243.
[13] S. Minato, "Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems," in Design Automation Conference (DAC), 1993, pp. 272-277.
[14] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, "Singular 3-1-6 - A computer algebra system for polynomial computations," http://www.singular.uni-kl.de, 2012.
[15] O. M. Hansen and J.-F. Michon, "Boolean Gröbner basis," in Proc Boolean Functions Cryptography \& Applications, 2006, pp. 185-201.
[16] M. Y. Vardi and Q. Tran, "Groebner Bases Computation in Boolean Rings for Symbolic Model Checking," in IASTED, 2007.
[17] M. Brickenstein and A. Dreyer, "Polybori: A Framework for Gröbner Basis Computations with Boolean Polynomials," Journal of Symbolic Computation, vol. 44, no. 9, pp. 1326-1345, September 2009.
[18] B. Buchberger, "A criterion for detecting unnecessary reductions in the construction of a groebner bases," in EUROSAM, 1979.
[19] S. Minato, "Calculation of Unate Cube Set Algebra using ZeroSuppressed BDDs," in Proc. Design Automation Conference (DAC), 1994, pp. 420-424.
[20] F. Somenzi, "CUDD: CU Decision Diagram Package Release 3.0.0," 2015.
[21] Berkeley Logic Synthesis and Verification Group, "ABC: A system for sequential synthesis and verification," www.eecs.berkeley.edu/alanmi/abc, 2007.
[22] C. Koc and T. Acar, "Montgomery Multiplication in GF(2^{k})," Designs, Codes and Cryptography, vol. 14, no. 1, pp. 57-69, Apr. 1998.
[23] H. Wu, "Montgomery Multiplier and Squarer for a Class of Finite Fields," IEEE Transactions On Computers, vol. 51, no. 5, May 2002.
[24] M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede, "Modular Reduction in GF (2 2^{n}) Without Pre-Computational Phase," in Proceedings of the International Workshop on Arithmetic of Finite Fields, 2008, pp. 77-87.
[25] J. López and R. Dahab, "Improved Algorithms for Elliptic Curve Arithmetic in GF $\left(2^{n}\right)$," in Proceedings of the Selected Areas in Cryptography. London, UK, UK: Springer-Verlag, 1999, pp. 201-212. [Online]. Available: http://dl.acm.org/citation.cfm?id=646554.694442

