
BOOLEAN GRÖBNER BASIS REDUCTIONS ON DATAPATH CIRCUITS USING THE UNATE

CUBE SET ALGEBRA

Utkarsh Gupta, Priyank Kalla, Vikas Rao
Electrical & Computer Engineering, University of Utah

Abstract—Recent developments in formal datapath verification
make efficient use of symbolic computer algebra algorithms for
formal verification. The circuit is modeled as a set of polynomials
over Boolean (or pseudo-Boolean) rings, and Gröbner basis (GB)
reductions are performed over these polynomials to derive a
canonical representation. GB reductions of Boolean polynomials
tend to cause intermediate expression swell (term explosion prob-
lem) – often making the approach infeasible in a practical setting.
To overcome these problems, this paper describes a logic synthesis
analogue of GB reductions over Boolean polynomials, using the
unate cube set algebra over characteristic sets. By representing
Boolean polynomials as characteristic sets using Zero-suppressed
BDDs (ZBDDs), implicit algorithms can be efficiently designed
for GB-reduction on digital circuits. We show that imposition
of circuit-topology based monomial orders on ZBDDs enables
an implicit implementation of polynomial division, canceling
multiple monomials in one-step. Experiments performed over
various finite field arithmetic architectures demonstrate the
efficiency of our algorithms and implementations as compared
to conventional explicit methods.

I. INTRODUCTION

Automated formal verification and equivalence checking
of arithmetic datapath circuits is challenging. Conventional
verification techniques, such as those based on binary de-
cision diagrams (BDDs) [1], And-Invert-Graph (AIG) based
reductions with SAT or SMT-solvers [2], etc., are infeasible
in verifying complex datapath designs. Such designs often
implement algebraic computations over bit-vector operands,
therefore finite integer rings [3] or finite fields [4] are con-
sidered appropriate models to devise decision procedures for
verification. For this reason, the verification community has
explored the use of algebraic geometry and symbolic algebra
algorithms for verification. In such a setting, the circuit is
modeled by way of a set of polynomials that generate an ideal,
and the verification problem is formulated using Gröbner basis
(GB) reduction techniques [5].

The GB problem exhibits high computational complexity.
Indeed, computing a GB (using Buchberger’s [6] or the F4
algorithm [7]) for large circuits is practically infeasible. Man-
aging this complexity ought be a major goal of any approach.

State-of-the-art & Limitations: Recent approaches [3] [8]
have discovered that particularly for circuit verification prob-
lems, the expensive GB computation can be avoided altogether.
For arbitrary combinational [3] [8] and sequential circuits [9],
a specialized term order > can be derived by analyzing the
topology of the given circuit. This term order is derived by
performing a reverse topological traversal of the circuit, and
in this manuscript we refer to it as the Reverse Topological
Term Order (RTTO). Imposition of RTTO > on the polynomial
ring renders the set of polynomials of the circuit itself a
GB. Subsequently, the verification problems can be solved

solely by way of GB-reduction (using multi-variate polynomial
division), without any need to explicitly compute a GB. The
techniques of [3] [8] have been extended and improved further
to verify integer arithmetic circuits. For instance, [10] and [11]
get more insights from the circuit structure that dictate specific
rules on the order of polynomials chosen in GB-reduction – by
accounting for topological levels, reconvergent fanouts, AND-
XOR gates with common inputs, etc. The authors in [12] show
that the reduction process can be parallelized by performing
reduction for each output bit independently.

A common theme among all these relevant works is that they
move the complexity of verification from one of computing a
GB to that of GB-reduction (multivariate polynomial division).
These will benefit greatly by a dedicated, domain-specific im-
plementation of GB-reduction carried out on the given circuit
under RTTO >. So far, the above techniques [3], [4], [8], [11],
[10], [12] use a general-purpose polynomial division approach,
together with explicit set representation, for this GB-reduction.
While some of these approaches do perform the reduction
in some specific ways – e.g., mimicking GB-reduction under
RTTO > by substitution [11], or using TEDs to perform input-
output signature comparisons [10], or the use of F4-style GB-
reduction on a coefficient matrix [8] – the overall concept of
polynomial division is still utilized in its rudimentary form,
involving iterative cancellation of monomials “1-step at a
time” on explicit data-structures. We show in the sequel, that
despite recent efforts, such GB-reductions can still lead to a
worst-case size explosion problem.

Proposed Solution: To make this GB-reduction on circuits
more efficient, this paper describes new techniques and imple-
mentations, specifically targeted for circuit verification under
RTTO >. In particular, we make use of implicit characteristic
set representation of Zero-Suppressed BDDs [13]. By ana-
lyzing the structure of ZBDDs for polynomial representation
under RTTO >, we show how this GB-reduction can be
efficiently implemented using algorithms that specifically ma-
nipulate the ZBDD graph, by interpreting Boolean polynomial
manipulation as the algebra of unate cube sets.

Rationale: The algebraic objects used to model the polyno-
mial ideals derived from digital circuits are rings of Boolean
polynomials. When Boolean functions are represented in F2
using AND/XOR expressions, and that too as a canonical
Gröbner basis, the representation tends to explode. Polynomial
representations employed in computer algebra tools, such as
the dense-distributive data-structure of the SINGULAR com-
puter algebra tool [14], are inefficient for this purpose. Since
addition (mod 2) and multiplication are equivalent to XOR and
AND operations, respectively, GB-reduction can be viewed
as a specialized AND/XOR Boolean function decomposition
problem. Clearly, implicit Boolean set representations such as

2

decision diagrams could be employed for this purpose. The
decision diagram of choice here is the ZBDD [13], because
of its power to represent and manipulate sparse combinatorial
problems – particularly “sets of combinations” using the unate
cube set algebra framework.

Technical Contributions: We describe when and how the
GB-reduction encounters a term-explosion (exponential blow-
up) under RTTO >, which cannot be easily overcome by
explicit representations. We show that ZBDDs can avoid
this exponential blow-up – thereby justifying their use. We
describe how the rudimentary polynomial division algorithms,
that iteratively cancel one monomial in every step, can be
implemented on ZBDDs under RTTO >. Subsequently, we
show that RTTO > imposes a special structure on ZBDDs
that allows us to cancel multiple monomials in every step
of polynomial division, thus improving GB-reduction in both
space and time! Finally, experiments conducted on finite
field arithmetic (crypto-circuits) benchmarks show an order
of magnitude improvement using our implementation of GB-
reduction.

Relationship to prior work in Boolean Gröbner Basis: The
symbolic algebra community has studied properties of Boolean
GB [15] [16] [17]. From among these, the work of PolyBori
[17] comes closest to ours, and is a source of inspiration for
this work. PolyBori proposed the use of ZBDDs to compute
Gröbner bases for Boolean polynomials. PolyBori is a generic
Boolean GB computational engine that caters to many permis-
sible term orders. Its division algorithm is also based on the
conventional concept of canceling one monomial in every step
of reduction. In contrast, our algorithms are tailored for GB-
reduction under the RTTO >. The efficiency of our approach
stems from the observation that the RTTO > imposes a special
structure on the ZBDDs, which allows for multiple monomials
to be canceled in one division-step.

II. PRELIMINARIES: NOTATION AND BACKGROUND

A. Computer Algebra

This section provides a brief description of the fundamental
concepts of commutative algebra including polynomial rings,
polynomial division, ideals, Gröbner basis and their applica-
tion in verification of circuits.

Let B = {0,1} denote the Boolean domain, F2 the finite
field of 2 elements (B≡ F2), and R = F2[x1, . . . ,xn] denote the
polynomial ring over variables x1, . . . ,xn with coefficients in
F2. Operations in F2 are performed (mod 2), so −1 = +1
in F2. We will use +, · to denote addition and multiplication
in R, and ∨,∧ and ⊕ to denote Boolean OR, AND and XOR
operations, respectively.

A polynomial f ∈ R is written as a finite sum of terms
f = c1X1 + c2X2 + · · ·+ ctXt . Here c1, . . . ,ct are coefficients
and X1, . . . ,Xt are monomials, i.e. power products of the type
xe1

1 · x
e2
2 · · ·xen

n , ei ∈ Z≥0. To systematically manipulate the
polynomials, a monomial order > (also called a term order)
is imposed on the ring such that X1 > X2 > · · · > Xt . Subject
to >, lt(f) = c1X1, lm(f) = X1, lc(f) = c1, are the leading
term, leading monomial and leading coefficient of f , respec-
tively. We also denote tail(f) = f − lt(f) = c2X2 + · · ·+ ctXt .

In this work, we are mostly concerned with terms ordered
lexicographically (lex).

Definition II.1. Let f = c1X1 + · · ·+ ctXt be a polynomial
in F2[x1, . . . ,xn] such that the coefficients ci ∈ {0,1}, and
monomials X = xe1

1 · x
e2
2 · · ·xen

n ,ei ∈ {0,1}. Then f is called a
Boolean polynomial. For Boolean polynomials lt(f) = lm(f).

A gate-level circuit can be modeled with Boolean polynomi-
als, where every Boolean logic gate operator is mapped from
B to a polynomial function over F2:

z = ¬a → z+a+1 (mod 2)
z = a∧b → z+a ·b (mod 2)
z = a∨b → z+a+b+a ·b (mod 2)
z = a⊕b → z+a+b (mod 2)

(1)

Polynomial Reduction via division: Let f ,g be polynomi-
als. If lt(f) is divisible by lt(g), then we say that f is reducible
to r modulo g, denoted f

g−→ r, where r = f − lt(f)
lt(g) · g.

Similarly, f can be reduced w.r.t. a set of polynomials F =
{ f1, . . . , fs} to obtain a remainder r. This reduction is denoted
as f F−→+ r, and the remainder r has the property that no term
in r is divisible by the leading term of any polynomial fi in
F . Algorithm 1 shows the step-by-step procedure to perform
this classical reduction.

Algorithm 1 Multivariate Reduction of f by F = { f1, . . . , fs}
1: procedure multi variate division(f ,{ f1, . . . , fs}, fi 6= 0)
2: ui← 0; r← 0, h← f
3: while h 6= 0 do
4: if ∃i s.t. lm(fi) | lm(h) then
5: choose i least s.t. lm(fi) | lm(h)
6: ui = ui +

lt(h)
lt(fi)

7: h = h− lt(h)
lt(fi)

fi
8: else
9: r = r+ lt(h)

10: h = h− lt(h)
11: return ({u1, . . . ,us},r)

The algorithm initializes h with the polynomial f and
cancels its leading term by some polynomial fi. If the leading
term lt(h) cannot be canceled by any lt(fi), then it is added
to the final remainder r and process is repeated until all the
terms in h are analyzed.

Polynomial Ideals: Given a set of polynomials F =
{ f1, . . . , fs} ∈ F2[x1, . . . ,xn], denote the ideal J generated by
F as J = 〈F〉 = 〈 f1, . . . , fs〉 = {∑s

i=1 hi · fi : hi ∈ R}. The
ideal J may have many different generators, i.e. it is possible
to have J = 〈 f1, . . . , fs〉 = 〈g1, . . . ,gt〉 = · · · = 〈h1, . . . ,hr〉. A
Gröbner basis G of ideal J is one such set of polynomials
G = GB(J) = {g1, . . . ,gt} that is a canonical representation of
the ideal.

Definition II.2. [Gröbner Basis] [5]: For a monomial or-
dering >, a set of non-zero polynomials G = {g1,g2, · · · ,gt}
contained in an ideal J, is called a Gröbner basis of J iff

3

∀ f ∈ J, f 6= 0, there exists i ∈ {1, · · · , t} such that lm(gi)
divides lm(f).

Gröbner basis G of an ideal J = 〈 f1, . . . , fs〉 is computed
using the Buchberger’s algorithm [6]. The algorithm initializes
the set G with the given generators of J i.e. { f1, . . . , fs}. The
algorithm is based on the computation of Spoly of pairwise
combination of polynomials in G using the following formula,

Spoly(fi, f j) =
L

lt(f)
· f − L

lt(g)
· f (2)

where L = LCM(fi, f j). The Spoly is then reduced w.r.t. the
polynomials in G: Spoly G−→+ h. If h is non-zero, it is added to
G. The algorithm terminates when there are no new non-zero
h generated from the set G. The idea of the Spoly reductions
is to cancel leading terms of polynomials { fi, f j} to obtain
polynomials with new leading terms which provide additional
information regarding the basis.

Definition II.3. [Gröbner Basis Reduction] [5]: Let G =
{g1, . . . ,gt} be a Gröbner basis of ideal J, and let f be another
polynomial. Then the remainder r obtained by reduction of
f modulo G, denoted f G−→+ r, is called the Gröbner basis
reduction (GBR) of f . Moreover, the remainder r so obtained
by GBR of f is a canonical expression modulo G.

Proposition II.1. Given a circuit C, we can represent all
the gates using (Boolean) polynomials F = { f1, . . . , fs} in
F2[x1, . . . ,xn] by means of Eqn. (1), s.t. ideal J = 〈F〉. Let
zi, i = 0, . . . ,k−1 denote the k-bit primary output variables
of the circuit. Compute a Gröbner basis G = GB(J) =
{g1, . . . ,gt} for the polynomials of the circuit, and perform
the GBR zi

G−→+ ri for all 0 ≤ i < k. Then all ri’s are a
canonical representation and can be used for formal verifi-
cation/equivalence checking.

This verification requires the computation of a Gröbner
basis. The Buchberger’s algorithm for computation of Gröbner
basis has high complexity (2(O(n)) in our setting). The work
of [8] showed that the GB computation can be avoided.

Definition II.4. [Product Criterion] [18]: For two polyno-
mials fi, f j in any polynomial ring R, if the equality lt(fi) ·
lt(f j) = LCM(lt(fi), lt(f j)) holds, then Spoly(fi, f j)

G−→+ 0.

Using this criterion we can say that when the leading terms
of all polynomials in the basis F = { f1, . . . , fs} are relatively
prime, then F is already a Gröbner basis (F = GB(J)). For
a combinational circuit C, a term order > can be derived by
analyzing the circuit topology which ensures this property is
true [3] [8]:

Proposition II.2. (From [8]) Let C be any arbitrary combi-
national circuit. Let {x1, . . . ,xn} denote the set of all variables
(signals) in C. Starting from the primary outputs, perform
a reverse topological traversal of the circuit and order the
variables such that xi > x j if xi appears earlier in the reverse
topological order. Impose a lex term order > to represent each
gate as a polynomial fi, s.t. fi = xi + tail(fi). Then the set
of all polynomials { f1, . . . , fs} forms a Gröbner basis G, as
lt(fi) = xi and lt(f j) = x j for i 6= j are relatively prime. This

term order > is called the Reverse Topological Term Order
(RTTO).

Subsequently, by imposing RTTO on the polynomials of the
circuit, the explosive GB computation is avoided, and verifi-
cation is performed by the canonical GB-reduction: zi

G−→+ ri.

a0

a1

b0

b1

c0

c3

c2

c1

r0

z1

z0

Fig. 1: A 2-bit modulo Multiplier circuit.

f1 : c0 +a0 ·b0, lm = c0; f2 : c1 +a0 ·b1, lm = c1

f3 : c2 +a1 ·b0, lm = c2; f4 : c3 +a1 ·b1, lm = c3

f5 : r0 + c1 + c2, lm = r0; f6 : z0 + c0 + c3, lm = z0
f7 : z1 + r0 + c3, lm = z1

Fig. 2: Polynomials of the circuit under RTTO constitute a GB.

Example II.1. Demonstration of the approach: Consider
the circuit given in Fig. 1. Impose RTTO on the circuit. The
primary outputs z0,z1 are both at level-0, variables r0,c0,c3
are at level-1, c1,c2 are at level-2, and the primary inputs
a0,a1,b0,b1 are at level-3. Order the variables {z0 > z1} >
{r0 > c0 > c3} > {c1 > c2} > {a0 > a1 > b0 > b1}. Using
this variable order, we impose a lex term order on the
monomials. Then all the polynomials extracted from the circuit
have relatively prime leading terms, as shown in Fig. 2, and
F = { f1, . . . , f7} forms a GB.

Then the GBRs z1
F−→+ a0 ·b0 +a1 ·b1 and z0

F−→+ a0 ·b1 +
a1 ·b0 +a1 ·b1 are canonical expressions of the output bits.

B. Unate Cube Sets & Boolean Polynomials
A Boolean variable represents a dimension of the Boolean

space Bn, a literal is an instance of a variable xi or its
complement ¬xi. A cube is a product of literals which denotes
a set of points in the Boolean space. A cube set consists of a
number of cubes, each of which is a combination of literals.
Unate cube sets allow the use of only positive literals, not
negative/complemented literals. Each cube in a unate cube set
represents a combination, and each literal represents an object
selected in the combination.

When cube sets are used to represent Boolean functions,
they are usually binate cube sets containing negative literals.
In binate cube sets, literals xi and ¬xi represent xi = 1 and
xi = 0, respectively; while the absence of a literal implies a
don’t care. In unate cube sets, literal xi implies xi = 1 whereas
its absence implies xi = 0. For example, the cube set {a,bc}
represents (abc) : {111,110,101,100,011} in the binate cube
set representation, whereas it represents (abc) : {100,011} in
the unate cube set representation.

4

Each monomial of a Boolean polynomial can be viewed as
a unate cube – a product of positive literals – and a Boolean
polynomial as a unate cube set. Then the GBR zi

G−→+ ri can
be interpreted as algebra over unate cube sets, resembling
a classical logic synthesis problem, as shown below. Let us
(re)consider the one-step division for Boolean polynomials:
f

g−→ r. This division is implemented as:

f
g−→ r = f − lt(f)

lt(g)
·g = f − lm(f)

lm(g)
·g

= f +
lm(f)
lm(g)

·g = f ⊕ lm(f)
lm(g)

∧g
(3)

We can replace lt(f) with lm(f) as coefficients are either
0 or 1. Notice that lm(f)

lm(g) is a unate product of literals. i.e. a
unate cube. The ⊕ operation cancels common cubes from f
and lm(f)

lm(g) ·g.

C. Zero Suppressed Binary Decision Diagrams (ZBDDs)

A ZBDD [13] can be obtained from a BDD by eliminating
all the nodes whose 1-edge points to 0 terminal node and by
sharing all the isomorphic sub-graphs for two nodes. Given the
order of the variables, a ZBDD represents a Boolean function
canonically.

r1 y

d d

1 0

Fig. 3: ZBDD for the polynomial r1 = yd + y+d.

In [19] Minato demonstrated that ZBDDs are an efficient
data-structure for implicit manipulation (algebra) of unate cube
sets. Fig. 3 is a ZBDD for the unate cube set {yd,y,d} with
the variable order y > d. The paths beginning from the root
node y and terminating in the 1-terminal node are the cubes of
the set. A variable is in a cube if its 1-edge is in the path and
is not in the cube if its 0-edge is in the path. The ZBDD can
also be interpreted as a polynomial r1 = yd+y+d where the
monomials can obtained the same way we obtain the cubes
for the equivalent set.

Based on the above discussion, we will: i) model GBR as the
algebra of unate cube sets; ii) use ZBDDs as the implicit data-
structure for this GBR; and iii) devise efficient implementation
of the GBR by exploiting the special structure imposed by
RTTO on the ZBDD graph. For details on the use of unate cube
set algebra in classical logic synthesis, and its implementation
on ZBDDs, we refer the reader to [13] [19].

III. THEORY AND ALGORITHMS

Consider the circuit in Fig. 4, impose RTTO: lex term order
with variable ordering as, z > y > x > d > c > b > a. The
Boolean polynomials for the circuit are: f1 = z+ y · d + y+
d, f2 = y+ x · c+ x+ c, f3 = x+ b · a+ b+ a. Under RTTO,

a

b
c
d

x y
z

Fig. 4: A chain of OR gates.

f1, f2, f3 forms a GB G= 〈 f1, f2, f3〉. For verification, we have
to reduce the output z modulo G. A classical symbolic algebra
reduction using an explicit representation is carried out as:

1) z
f1−→ yd + y+d

2) yd+y+d
f2−→ y+xdc+xd+dc+d

f2−→ xdc+xd+xc+x+dc+
d + c

3) xdc+ xd + xc+ x+ dc+ d + c
f3−→ xd + xc+ x+ dcba+ dcb+

dca+dc+d+c
f3−→ xc+x+dcba+dcb+dca+dc+dba+db+

da+d+ c
f3−→ x+dcba+dcb+dca+dc+dba+db+da+d+

cba+ cb+ ca+ c
f3−→ dcba+dcb+dca+dc+dba+db+da+

d + cba+ cb+ ca+ c+ba+b+a = r

In the first step, z is reduced by f1 just once as that’s the
only term. In the second step, the result of step one is reduced
twice by f2 as the result has two terms containing variable
y. Similarly, four reductions by f3 are required to reduce the
result of step two into an expression containing only primary
inputs (which cannot be reduced further).

Observations: i) Notice that the size of the final remainder
corresponds to that of the worst case of a Boolean polynomial:
i.e. r contains 2n−1 (= 15) monomial terms for n (= 4) vari-
ables. ii) Classical division algorithms reduce the polynomials
1-step at a time, where only one monomial is canceled in
each step. iii) The number of 1-step reductions can increase
exponentially as GBR progresses across the circuit.

It is clear that any data-structure that explicitly represents
each monomial will encounter space and time explosion: this
includes the dense-distributive representation of SINGULAR
computer algebra tool [14], or the ones used by [10], [11]. The
F4-style polynomial reduction of [8], [4] simulates division on
a matrix M representing the problem. However, each column
of M corresponds to monomial generated in the division
process, therefore [8], [4] also encounter this size explosion.

The use of ZBDDs can help overcome this explosion. Fig.
5 shows the same reduction of z by f1, f2, f3 using ZBDDs
(exact procedure discussed later). The size of the ZBDDs
after complete reduction by f1, f2, f3 increases linearly in
the number of nodes. Subsequently, the final remainder has
2 · n− 1 (= 7) nodes (excluding the terminal 1 and 0 nodes)
for n (= 4) variables.

ZBDD Representation: The following steps describe the
procedure for building ZBDDs for the polynomials of the gates
of circuits.

1) Obtain the RTTO for the variables (signals) of the circuits
as x1 > x2 > · · ·> xn.

2) Impose the same order on the ZBDDs.
3) Declare ZBDDs for each of these variables.
4) Use Eqn. (1) to model the gates of the circuit as Boolean

polynomials. Build ZBDDs for these polynomials using
the + and · binary operations for modulo 2 sum and prod-
uct of variables. The + operation can be implemented as
f +g = f ∪g− f ∩g. However, in order to avoid the large

5

z

01

r3 d

cc

bb

a a

1 0

f1 f3f2

x

dd

c c

1 0

r2

y

d d

1 0

r1

Fig. 5: Reduction of output of the circuit in Fig. 4 by f1, f2, f3.

intermediate ZBDDs for the union we have implemented
this operation as presented in Algorithm 1 in [17].

5) Traversing only the solid edges from the root node of a
ZBDD to terminal 1 delivers the leading monomial of
that polynomial. The child node of the root at the solid
edge’s end will be referred to as then and the other child
as else.

Once the ZBDDs for the circuit have been built and stored in
G, we need to perform the reduction zi

G−→+ ri for each output
bit zi. The polynomial ri will be a canonical representation of
zi in terms of primary inputs only.

Consider the step 2 of division corresponding to Fig. 4,
where the polynomial r1 = yd+y+d needs to be reduced by
f2. The ZBDDs for r1 and f2 are shown in Fig. 6. Checking if
lt(f2) divides lt(r1) becomes trivial as we just need to compare
the indices (each variable has a unique index) of top-most
nodes of ZBDDs for the polynomials r1 and f2, which in this
case are equal. Recall from Proposition II.2 that the lt(fi) of
the polynomials for gates of the circuit will always be xi.

Division with ZBDDs: Cancel 1 monomial in every step
The algorithm for conventional reduction procedure using

ZBDDs is shown in Algorithm 2. The input parameters are the
ZBDD of the output bit of the circuit zi and poly list contain-
ing the ZBDDs for the set of polynomials corresponding to
the gates of the circuit. The algorithm is based on the classical
division procedure (Algorithm 1).

Due to RTTO, the circuit polynomials for each gate are
represented as f1 = x1 + else(f1), . . . , fs = xs + else(fs) with
variable order x1 > · · · > xs > · · · > xn (Prop. II.2). Note that
the variables {xs+1, . . . ,xn} are primary inputs and are not the
output of any logic gate. Then the elements in poly list are
ordered f1 > f2 > · · ·> fs i.e. poly list[1] = f1, poly list[2] =
f2 and so on. Populating poly list in this way avoids the
search (Line 4, Algorithm 1) required to find a polynomial
g ∈ poly list that can divide the leading term of zi. While
iterating over the polynomials g ∈ poly list if a certain poly-
nomial does not divide the leading term of zi, it will imply
the polynomial is not in the logical cone of zi.

The procedure leading term(g) returns the leading term of
the ZBDD representation of polynomial g. If g divides f , then
the procedure ZBDD Divide(f ,g) (performs cube division)
returns the quotient of the division, else it returns zero. Line
8 iteratively computes zi = zi +

lt(zi)
lt(g) ·g. The polynomial zi is

completely reduced w.r.t. the polynomial g in the while loop.

 f2 y

x

1

c c

0

then(r1)

r1 y

d d

1 0

else(r1)

Fig. 6: ZBDDs for polynomial r1 and f2.

Algorithm 2 Reduction: Cancel 1 monomial every iteration
1: procedure single mon red(zi, poly list)
2: for each g ∈ poly list do
3: lead g = leading term(g)
4: lead zi = leading term(zi)
5: quotient = ZBDD Divide(lead zi, lead g)
6: while quotient 6= zero do
7: prod = quotient ·g
8: zi = zi + prod
9: lead zi = leading term(zi)

10: quotient = ZBDD Divide(lead zi, lead g)
11: return zi

Improved Reduction: Cancel multiple monomials in
1 step: Next, we will show how zi can be reduced by a
polynomial g in one step. In the example of Fig. 5, the primary
output z is reduced by f1 to get r1. The next step is to reduce
r1 by f2 to get r2. To demonstrate our approach we will show
how the reduction of r1 by f2 can be achieved in one step.

The polynomial r1 = yd + y+ d can be written as y · (d +
1) + d. If we perform 1-step reduction of r1 by f2 we get
the quotient d +1. This quotient is visible as the polynomial
represented by the then-node of r1 (Fig. 6). So the reduction
can be performed by multiplying d+1 with f2 and adding this
product to r1 (mod 2):

(yd + y+d)+(d +1) · (y+ xc+ x+ c) (mod 2)
= 2 · (yd + y)+d +(d +1) · (xc+ x+ c) (mod 2)
= d +(d +1) · (xc+ x+ c) (mod 2)

Notice that else(r1) = d and else(f2) = xc+x+c. In addition,
we know that 2 · (f d + f) (mod 2) is going to be zero.
Therefore, in order to reduce number of operations, we directly

6

use the last step as a formula for reduction:

r1
f2−→+ = d +(d +1) · (xc+ x+ c)

else(r1)+ then(r1) · else(f2)

So the reduction process effectively involves just two opera-
tions, a modulo 2 sum and a product. This has the effect of
canceling all the terms in r1 that can be canceled by lt(f2) in
one-go, implicitly canceling multiple monomials in one step.

The algorithm for Multiple Monomial Reduction is shown
in Algorithm 3, where the notations, zi and poly list, are same
as in Algorithm 2. Unlike in Algorithm 2, however, where
we need to find the quotient of lead zi/lead g, Algorithm 3
only determines if lead g can divide zi at all (in this case
the quotient is then(zi)). This can be accomplished by just
comparing the indices of top-most nodes of zi and g. This
algorithm significantly reduces the number of iterations, which
now exactly equals the size of poly list. For the example
of Fig. 4, the number of iterations is 3 using Algorithm 3,
whereas 7 iterations are required using Algorithm 2.

Algorithm 3 Reduction: Cancel multiple monomials
1: procedure multi mon red(z, poly list)
2: for each g ∈ poly list do
3: if index(g) == index(z) then
4: z = else(z)+ then(z) · else(g)
5: return z

We have implemented the above GBR procedures directly
using the CUDD package [20]. The circuit under verification
is analyzed, RTTO based variable order is imposed on the
ZBDDs, and the Boolean polynomials of the circuit are
represented as unate cube sets. The polynomials of of the gates
of circuit, fi ∈ G, are inserted in poly list according to the
variable order x1 > · · ·> xi > · · ·> xn, where fi = xi+else(fi)

(this is due to Prop. II.2). To perform GBR zi
G−→+ ri Algorithm

3 is invoked to obtain the remainder.

IV. EXPERIMENTAL RESULTS

This section presents the results of using our implementation
(Algorithm 3) for reducing circuits used in cryptography.
We compare our results against F4-style reduction [4], par-
allelized approach for performing reductions on Galois field
multipliers [12], and PolyBori [17] that uses the conventional
reduction procedure on top of ZBDDs. The experiments are
performed on a 3.5GHz Intel CoreTM i7-4770K Quad-Core
CPU with 32 GB of RAM.

A. Mastrovito Multipliers

Modular multiplication is an important computation used in
cryptography. A Mastrovito multiplier architecture can be em-
ployed for performing this computation. Mastrovito multipliers
compute Z = A× B (mod P) where P is a given primitive
polynomial for the datapath size k.

The product A×B is computed using an array multiplier
architecture, and then the result is reduced modulo P. The
following example demonstrates the Mastrovito multiplier
computation [8].

Example IV.1. Consider the field F24 . Let the inputs be: A =
a0 + a1 ·α+ a2 ·α2 + a3 ·α3 and B = b0 + b1 ·α+ b2 ·α2 +
b3 ·α3, and the irreducible polynomial be P(x) = x4 + x3 +1.
The coefficients of A = {a0, . . . ,a3},B = {b0, . . . ,b3} are in
F2 = {0,1}. First, we perform the multiplication as:

a3 a2 a1 a0
× b3 b2 b1 b0

a3 ·b0 a2 ·b0 a1 ·b0 a0 ·b0
a3 ·b1 a2 ·b1 a1 ·b1 a0 ·b1

a3 ·b2 a2 ·b2 a1 ·b2 a0 ·b2
a3 ·b3 a2 ·b3 a1 ·b3 a0 ·b3

s6 s5 s4 s3 s2 s1 s0

The result Sum = s0 + s1 ·α+ s2 ·α2 + s3 ·α3 + s4 ·α4 + s5 ·
α5 + s6 ·α6, where, s0 = a0 · b0, s1 = a0 · b1 + a1 · b0, s2 =
a0 · b2 + a1 · b1 + a2 · b0, and so on. Here the multiply “·”
and add “+” operations are performed modulo 2, and hence
implemented in a circuit using AND and XOR gates. As the
coefficients are always reduced modulo p = 2, there are no
carry-chains in the design. Next, the result is reduced modulo
the primitive polynomial P(x) = x4 + x3 +1, as:

s3 s2 s1 s0
s4 0 0 s4 s4 ·α4 (mod P(α)) = s4 · (α3 +1)
s5 0 s5 s5 s5 ·α5 (mod P(α)) = s5 · (α3 +α+1)
s6 s6 s6 s6 s6 ·α6 (mod P(α)) = s6 · (α3 +α2 +α+1)
z3 z2 z1 z0

The final output of the circuit is: Z = z0+z1α+z2α2+z3α3;
where z0 = s0 + s4 + s5 + s6; z1 = s1 + s5 + s6; z2 = s2 +
s6; z3 = s3 + s4 + s5 + s6.

Table I provides the results for the reductions zi
G−→+ ri for

Mastrovito multipliers for each output bit zi. The benchmarks
are taken from [8] which are optimized using ABC [21]
with the same commands and library as mentioned in [12].
Algorithm 3 reduces each output bit independent of other bits.
Therefore, we have presented the results obtained by running
our reduction algorithm both parallely and sequentially for
each output bit. Similarly, the results for implementation in
PolyBori are also presented for both cases. The maximum
number of parallel processes is decided by the memory usage
of each process (i.e. reducing one bit) for our implementation
and the total available memory. The larger benchmarks are run
with fewer parallel processes as they consume more memory.

In the table, the column #T represents the number of
parallel processes. (S) and (P) refer to the cases when the
experiments are run sequentially and parallely for the output
bits zi, respectively.

TABLE I: Mastrovito Multipliers (Time in seconds); k =
Datapath Size, #Gates = No. of gates, #T = No. of threads,
Time-Out = 30 hrs, (P): Parallel Execution, (S): Sequential
Execution, K = 103, M = 106, PB: PolyBori, ZR: Algorithm 3

k #Gates F4 [4] #T [12](P) PB ZR
(P) (S) (P) (S)

64 11.5K 1.3 20 3.70 3.60 2.21 0.73 0.27
128 46K 9.89 20 27.54 23.99 16.76 5.08 1.63
163 73.5K 32.61 20 55.96 48.67 33.72 11.41 3.11
233 122K 86.30 20 127.61 112.96 77.23 21.77 3.63
283 193K 274.68 20 253.05 227.77 157.45 49.89 11.41
409 386K 2,528.48 10 716.80 659.64 426.92 163.52 17.68
571* 1.6M TO 3 5,331 CR CR 2,126.65 566.39

7

The 571-bit multiplier could not be synthesized and mapped
with the given memory. Therefore, we have provided results
for a structured (but not optimized) 571-bit multiplier bench-
mark. Our implementation outperforms the explicit approaches
of [4] and [12] for Mastrovito multipliers. For the 571-bit
multiplier, the implementation of [4] does not finish for the
given time period of 30 hours and the PolyBori implementation
crashes (CR).

An interesting point to note in the Table I is that our
implementation takes less time when we are running it sequen-
tially. There is a certain overhead involved when we declare
variables and build ZBDDs for each gate of the circuit. In the
case of Mastrovito multipliers benchmarks, this overhead is
substantially greater than the reduction time for each output
bit. Therefore, when we run these benchmarks parallely this
overhead time hampers the overall run time.

B. Montgomery Multipliers

Exponentiation (repeated multiplication) is often required
in cryptosystems. For such applications, Montgomery archi-
tecture [22] [23] [24] are considered more efficient than
Mastrovito multipliers as they do not require explicit reduction
modulo P after each step. Fig. 7 shows the structure of a
Montgomery multiplier. Each MR block computes A ·B ·R−1,
where R is selected as a power of a base (αk) and R−1 is the
multiplicative inverse of R in F2k . As this operation cannot
compute A ·B directly, we need to pre-compute A ·R and B ·R
as shown in the Fig. 7. We denote the leftmost two blocks as
Block A (upper) and B (lower), the middle block as Block C
and the output block as Block D.

MR

MR

MR

MR
A R

B R

R
2

R
2

A B R

A

B

G=A B (mod P)

"1"

Fig. 7: Montgomery multiplication.

Table II provides the results for flattened (bit-blasted) and
optimized Montgomery multipliers for the sequential and
parallel executions. The 571-bit benchmark in the table is an
unoptimized structured benchmark. We again get a significant
improvement over the explicit approaches except for the case
of 283 bit multiplier.

TABLE II: Montgomery Multipliers (Time in seconds); k =
Datapath Size, #Gates = No. of gates, #T = No. of threads,
Time-Out = 30 hrs, (P): Parallel Execution, (S): Sequential
Execution, K = 103, M = 106, PB: PolyBori, ZR: Algorithm 3

k #Gates F4 [4] #T [12](P) PB ZR
(P) (S) (P) (S)

64 9.5K 16.29 20 10.69 6.27 9.22 3.75 8.37
128 35K 621.90 20 36.19 28.93 34.59 13.76 24.73
163 56.5K 2,608.4 20 204.94 167.73 335.24 141.68 321.60
233 111K 385.92 20 132.51 119.77 99.36 42.16 31.88
283 165K 5,344 20 704.13 1,194.2 2,078.1 1,065.3 2,113.0
409 340K 7,104 10 697.91 737.23 722.05 303.91 299.92

571* 1.97M TO 3 TO CR CR 43,813 99,042

Table III presents the statistics for hierarchical Montgomery
multipliers for the blocks A, B, C, and D. The experiment
first reduces the outputs of a block modulo the gates of that
block, and then reduces the primary outputs modulo these four
sets of remainders (ZBDDs), thus exploiting the hierarchy of
these circuits. Table III shows the time for reduction of each
block and the time for reducing the primary outputs across
the four levels. The time for reducing the primary outputs
across levels in case of F4 implementation is <1 second, and
is not explicitly mentioned in the table. The row labeled Total
presents the sum of time of reduction across levels and the
maximum reduction time for each block (as the reductions for
the four levels are independent of each other).

TABLE III: Montgomery Blocks (Time in seconds); k =
Datapath Size, #Gates = No. of gates, Time-Out = 30 hrs,
Red. = time for reduction, Coll. = time to reduce across the 4
levels. K = 103, M = 106, PB: PolyBori, ZR: Algorithm 3

k #Gates Block F4 [4] PB ZR
Red. Coll. Red. Coll.

163

33K Block A 25 12

16

1

1833K Block B 25 12 1
85K Block C 73 18 7
32K Block D 24 12 1

Total 73 34 25

233

55K Block A 142 32

5

0.14

455K Block B 141 33 0.14
163K Block C 408 34 2.1
54K Block D 140 32 0.13

Total 408 39 6.1

283

82K Block A 330 79

26

24

9082K Block B 329 78 23
241K Block C 883 173 118
81K Block D 321 80 23

Total 883 199 208

409

168K Block A 1,322 177

28

0.57

29168K Block B 1,335 175 0.57
502K Block C 4,471 192 14
168K Block D 1,338 176 0.56

Total 4,471 220 43

571

330K Block A 5,371 769

1,341

321

1,412330K Block B 5,421 747 332
980K Block C 37,804 3,605 3026
328K Block D 5,539 751 338

Total 37,804 4,946 4,438

C. Point Addition over Elliptic Curves

Point addition is an important operation required for the task
of encryption, decryption and authentication in Elliptic Curve
Cryptography (ECC). Modern approaches represent the points
in a projective coordinate systems, e.g., the López-Dahab (LD)
projective coordinate [25] due to which the point addition
operation can be implemented as polynomials in the field.

Example IV.2. Consider point addition in López-Dahab (LD)
projective coordinate. Given an elliptic curve: Y 2 +XY Z =
X3Z + aX2Z2 + bZ4 over F2k , where X ,Y,Z are k-bit vectors
that are elements in F2k and similarly, a,b are constants from
the field. We represent point addition over the elliptic curve
as (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1). Then X3, Y3, Z3
can be computed as follows:

8

A = Y2 ·Z2
1 +Y1 B = X2 ·Z1 +X1

C = Z1 ·B D = B2 · (C+aZ2
1)

Z3 =C2 E = A ·C
X3 = A2 +D+E F = X3 +X2 ·Z3

G = X3 +Y2 ·Z3 Y3 = E ·F +Z3 ·G

TABLE IV: Point Addition Circuits (Time in seconds); k =
Datapath Size, #Gates = No. of gates, K = 103, M = 106

k #Gates F4 [4] PB ZR
64 15.3K 1.78 3.32 0.72

128 64K 40.55 27.41 6.03
163 104K 130.24 57.57 13.13
233 139K 335.60 106.85 19.62
283 281K 1,787.96 273.53 64.48
409 423K 5,077.50 578.15 115.20
571 1.14M 48,162.29 CR 725.95

The word-level abstraction approach in [4] presents the
results for extracting the above representation for each of
A,B, . . . ,X3,Y3,Z3. It first performs a bit-level reduction and
then a bit to word substitution for the primary input bit
variables. Table IV shows the comparison of the bit-level
reduction of ECC Point addition circuits as done in [4]
against our implementation. This result demonstrates that our
implementation can be integrated with that of [4] to improve
the overall process.

Integer Multiplication: When performing reduction on
integer multiplication benchmarks, a large number of non-
linear monomials are generated that can be canceled early
in the reduction process by employing a word-level approach
unlike our bit-level reduction approach.

V. CONCLUSION

This paper has presented an approach to derive a canonical
polynomial representation for each output bit zi of a circuit,
by modeling the gates of the circuit as a set of polynomials
G over F2, and performing the reduction zi

G−→+ ri. The unate
cube set algebra prowess of ZBDDs is exploited to represent
the polynomials implicitly. We take further advantage of this
data structure to improve the classical Gröbner basis reduction
method that relies on canceling only 1 monomial in every
iteration of division. Our approach cancels multiple monomials
in each step of division, thus speeding up the reduction. The
efficiency of our approach is demonstrated by completing the
reduction for up to 571-bit modulo multipliers in the allotted
time, and significant improvement is achieved over the F4-
style reduction, parallelized reductions and PolyBori based
techniques. As part of our future work, we will be pursuing
word-level implementation of the polynomial reduction for
integer arithmetic circuits.

Acknowledgement: The authors wish to thank Cunxi Yu
for assistance with optimization of the benchmarks used in
the experiments.

REFERENCES

[1] R. E. Bryant, “Graph Based Algorithms for Boolean Function Manip-
ulation,” IEEE Trans. on Computers, vol. C-35, pp. 677–691, August
1986.

[2] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to Combinational Equivalence Checking,” in Proc. Intl. Conf. on CAD
(ICCAD), 2006, pp. 836–843.

[3] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Gruel, “An Alge-
braic Approach to Proving Data Correctness in Arithmetic Datapaths,”
in Computer Aided Verification Conference, 2008, pp. 473–486.

[4] T. Pruss, P. Kalla, and F. Enescu, “Efficient Symbolic Computation for
Word-Level Abstraction from Combinational Circuits for Verification
over Finite Fields,” IEEE Trans. on CAD, vol. 35, no. 7, pp. 1206–1218,
July 2016.

[5] W. W. Adams and P. Loustaunau, An Introduction to Grobner Bases.
American Mathematical Society, 1994.

[6] B. Buchberger, “Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal,”
Ph.D. dissertation, Philosophiesche Fakultat an der Leopold-Franzens-
Universitat, Austria, 1965.

[7] Faugère, “A new efficient algorithm for computing Gröbner bases (F4),”
Journal of Pure and Applied Algebra, vol. 139, pp. 61–88, June 1999.

[8] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner Basis Reductions for
Formal Verification of Galois Field Arithmetic Circuits,” in IEEE Trans.
on CAD, vol. 32, no. 9, 2013, pp. 1409–1420.

[9] X. Sun, P. Kalla, and F. Enescu, “Word-level Traversal of Finite
State Machines using Algebraic Geometry,” in Proc. High-Level Design
Validation and Test, 2016.

[10] M. Ciesielski, C. Yu, D. Liu, W. Brown, and A. Rossi, “Verification of
Gate-Level Arithmetic Circuits by Function Extraction,” in Proc. Des.
Auto. Conf. (DAC), 2015.

[11] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining gröbner basis
with logic reduction,” in Proc. Design Automation and Test in Europe,
2016, pp. 1048–1053.

[12] C. Yu and M. Ciesielski, “Efficient parallel verification of galois field
multipliers,” in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan 2017, pp. 238–243.

[13] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combina-
torial Problems,” in Design Automation Conference (DAC), 1993, pp.
272–277.

[14] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
3-1-6 — A computer algebra system for polynomial computations,”
http://www.singular.uni-kl.de, 2012.

[15] O. M. Hansen and J.-F. Michon, “Boolean Gröbner basis,” in Proc.
Boolean Functions Cryptography & Applications, 2006, pp. 185–201.

[16] M. Y. Vardi and Q. Tran, “Groebner Bases Computation in Boolean
Rings for Symbolic Model Checking,” in IASTED, 2007.

[17] M. Brickenstein and A. Dreyer, “Polybori: A Framework for Gröbner
Basis Computations with Boolean Polynomials,” Journal of Symbolic
Computation, vol. 44, no. 9, pp. 1326–1345, September 2009.

[18] B. Buchberger, “A criterion for detecting unnecessary reductions in the
construction of a groebner bases,” in EUROSAM, 1979.

[19] S. Minato, “Calculation of Unate Cube Set Algebra using Zero-
Suppressed BDDs,” in Proc. Design Automation Conference (DAC),
1994, pp. 420–424.

[20] F. Somenzi, “CUDD: CU Decision Diagram Package Release 3.0.0,”
2015.

[21] Berkeley Logic Synthesis and Verification Group, “ABC:
A system for sequential synthesis and verification,”
www.eecs.berkeley.edu/alanmi/abc, 2007.

[22] C. Koc and T. Acar, “Montgomery Multiplication in GF(2k),” Designs,
Codes and Cryptography, vol. 14, no. 1, pp. 57–69, Apr. 1998.

[23] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite
Fields,” IEEE Transactions On Computers, vol. 51, no. 5, May 2002.

[24] M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede, “Modular
Reduction in GF(2n) Without Pre-Computational Phase,” in Proceedings
of the International Workshop on Arithmetic of Finite Fields, 2008, pp.
77–87.

[25] J. López and R. Dahab, “Improved Algorithms for Elliptic Curve
Arithmetic in GF(2n),” in Proceedings of the Selected Areas in
Cryptography. London, UK, UK: Springer-Verlag, 1999, pp. 201–212.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646554.694442

