Dynamic Reduction based Verification of
Slack Inelastic Message Passing Systems

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah, Salt Lake City UT 84112, USA,
http://www.cs.utah.edu/formal _verification

Abstract. In message passing distributed systelhscking sendommands can
acquire anon-blockingbehavior if the underlying runtime provides sufficient
slack i.e., buffer space to fully absorb messages being sent. Programs in many
concurrent languages astack elastici.e., adding slack does not introduce bugs.
However, programs using MPI — the most widely used API for parallel program-
ming — are slacknelastic We provide the first approach we know to verify slack
inelastic programs, while avoiding theima approach of considering every send
with/without slack. In MPI programs, added slack causes new behaviors by un-
blocking send, causindater send to issue. The new sends can compete for
non-deterministic (wildcard) receive matches, adding new behaviors. We char-
acterize the complexity of Minimal Slack Enumeration (MSE). We then provide
a practical algorithm calleBOFE\isg that first considers a slack-free execution,
performs MSE to discover where slack matters, and integrates dynamic partial
order reduction and MSE. Experimental results show that our new algorithm is
efficient on real examples, while handling slack inelasticity soundly.

1 Introduction

A majority of large-scale parallel programs used in science and engineering research
are written using the Message Passing Interface (MPI [8]) application program inter-
face (API), and are run on expensive supercomputers consisting of thousands of CPUs.
An MPI program, typically written in languages such as C, represents a large-scale
distributed computation, employing communication and synchronization calls to other
MPI processes through MPI/user library functions. The MPI library is large, consist-
ing of over 300 functions; user libraries are also large, containing legacy units. Many
aspects of an MPI program are unknown staticalyg{(the process targeted by an

MPI send can be described through expressions). All this makes dynamic methods
based on direct execution of the codel[11,12,13] a practical approach for verification.
Since MPI programs are highly optimized for performance, they are prone to many bugs
such as deadlocks, MPI object leaks, assertion violations, and unintended communica-
tion matches (also known as communication races). Conventional MP| program testing
methods are inadequate for tracking down these bugs mainly because they do not have
schedule (interleaving) control methods such as partial order reduction (POR) that min-
imize wasted interleavings. Partial order methods are especially important for MPI, as
MPI processes compute in separate memory spaces, and also most MPI calls commute.

* Supported in part by Microsoft and NSF award CNS00509379

Putting all these facts together, dynamic partial order reduction (DPOR) methods are
essential to handle large MPI programs.

One hopes that message passing distributed systeraekeelasticThat is, in the
absence of slack (system-provided buffering), sends degenerate into rendezvous sends,
and with slack, theysafelyturn into non-blocking sends (conducive to higher over-
all program performance) k€., no new deadlocks or safety violations are introduced
by adding slackUnfortunately, MPI programs argack inelastic increased system-
provided buffering can introduce these bugs. Our contribution here is a dynamic model
checking algorithm that correctly and efficiently handles the slack inelasticity of MPI.
Background: Our previous work[[4,6] contributed to dynamic stateless verification of
MPI programs by offering a tool called ISP that has been used to check many prac-
tical MPI programs. One recent result [6] pertaining to ISP is the model checking of
a 14KLOC MPI program with multiple processes in about five seth‘Eise DPOR
algorithm used in ISP is calldOE (Partial Order considering Elusive interleavings).

In addition to reducing interleavings, POE also ensures that the required interleavings
are actually exercised). However, POE does not handle MPI’s slack inelasticity.
Related Work: In [2], language restrictions that disallowed non-deterministic send/re-
ceive message matches were proposed by Manohar and Martin as a means of guarantee-
ing slackelasticity(they coined this term). Siegel and Avrunin [7] made a very similar
observation — that MPI programs withowtldcard receivesare slack elastic (adding

slack may eliminate deadlocks, but never introduce th&¥igcard receivesre non-
deterministic receive statements that can match one of mampetingsends targeting

this receive.[[[7] proposes the following verification approach: verify an MPI program

in their subset by allocatingero(we strictly mearinsufficienj slack to the sends. If no
deadlocks exist, it is possible to conclude that slack allocation will not introduce dead-
locks. It is helpful to keep in mind that programs written within slack elastic subsets of
MPI may still have deadlock®.g, when two constituent processes first post message
sends targeting each other, and subsequently post receives matching the sends (the so
calledhead-to-headleadlocks). Such deadlocks vanish when slack is allocated.
Importance of handling slack inelasticity: Past research has studied how lossy buffers
affect model checking; we are unaware of any work on how slack addition affects model
checking. There is an explosion of software libraries and APIs under consideration
for programming parallel systems (e.g., the Multicore Communications[API [14]): the
presence of non-deterministic receives renders any such API slack inelastic. The user
community of MPI is very largeg.g, every proposed Petascale supercomputer will
primarily run MPI) and very diverse, making it mandatory to have the ability to verify
MPI programs outside of the aforesaid syntactic restrictions. In addition, MPI libraries
often employ wildcard receives.

Contributions, Roadmap: Given an MPI programPOEysg can determine all the
sends in the program that can match each instance of a wildcard receive. It does this
by exactlycomputing the set of sends that can be co-enabled with the receive. This is
a non-trivial calculation in MPI as explained momentarily. While co-enabledness over-
approximation is easier (and may serve other purposes, such as computing persistent

1 without any POR, just five MPI processes with only five instructions each can generate in
excess ofl0'? interleavings — impractical for a dynamic model checker.

sets as in[[1]), it does not serve our purposes. For us, an over-approximated set of
co-enabled sends will contain those that cannot match a receive. If a dynamic model
checker’s scheduler is asked to force these matches, it will deadlock.

Computing co-enabledness is tricky in MPI because MPI function invocations can
complete out of program ordere.g, if a process P1 sends a megabyte to P2 and then
a byte to P3, there is no reason why the second send should not be allowed to finish
first. However, if both sends are destined to P2, the MPI runtime must finish them in
issue order, in order to guaranteen-overtaking8] (between any pair of processes,
messages are to be delivered in FIFO order}; [B we formally define theompletes-
beforerelation to capture MPI's required completion ordering. Using completes-before,
we can accurately determine whether a séhdnd a potentially matching wildcard
receiveR can be co-enabled.

This work shows that slack addition also affects co-enabledness fundamentally.
ThroughPOEy\sg, we can determine the minimal set of serfils. .. S, that must
be provided slack in order to allosome othelS and R to be co-enabled. We call this
calculation theminimum slack enumeratiqiSE) problem. MSE is a search problem
over the completes-before graph of the execution whose complexity is shown to be
#P-complete§[4). Finally, POE, MSE, and the DPOR algorithm dfl[1] are integrated
to form our finalPOEysg algorithm. INPOEysg, we employ two alternating phases
of state space reductions: interleaving reduction through POE based DPOR, and slack
enumeration reduction through MSE. In summary, naw results in this paper are:
(i) the formalization of MPI that captures non-overtaking as well as slack (Sédtion 3),
and the definition of completes-before based on this semantics, (ii) a new formulation
of POE [4] through prioritized execution of the semantic rules (Fidure]4(a)), (iii) the
POEMsE algorithm, and (iv) experimental evaluation on realistic examples.lin [3] we
describe how we have validated our MPI semantics.

2 lllustration and Formal Modeling of MPI

We begin our presentation of MPI's formal semantics by noting that individual MPI
processes compute in separate memory spaces, and iraatatchrough MPI calls.
MPI programs are required to terminate, with all processes calliRf Finalize
This meets the acyclic state space conditiori_bf [1]. This also permits us to model MPI
processes as a straight-line abstract MPI call sequences defined by the control flow, and
leave out all C constructs (see Figfife 1;ih [3], we present the C/MPI codes).

The MPI function calls that we consider in this paper are sefjdreceive R),
wait (W), and barrier B) (our implementation deals with well over 60 MPI functions,
sufficient to write a large class of MPI programs).stands for MPI's non-blocking
send — calledMPI_lIsend in the MPI library. An invocation ofS' initiates sending in
the background, and lets the invoking process proceed with its execution. Sintiarly,
stands for MPI's non-blocking receive, naméiiPI_Irecv , which initiates receive
in the backgroundW stands for MPI'sMPI_Wait function. Such a call refers to a
previously issued or R via handles. Frequently, programmers treat the interstices of
an.S and the followingl? as a delay slot, filling it with unrelated computations. We use
S® to denote an instance 6ffor which the MPI runtime provides adequate buffering.

An invocation of W that refers to art operation must block until thé' had a
chance to copy its message out of the process memory space, and into either (i) the

Py Py Py

P, P P

52,1(1) S;l(Z) R22,1(*) So,1(1) Bi Ro,1(*)

Wo2((0,1) Wis((1,1) Wana((2,1)) Wo2((0, 1)) $1.2(2) B22

So.5(2) R1.5(0) Ra.5(0) S0,3(2) Wis({1,2)) W2 3((2,1))
Bo.a R1,4(0) R2,4(0)

Wo,4(0,3)) W1,a((1,3)) W2,4((2,3))
Wo,5({0,3)) Wi 5((1,4)) Wa5((2,4))

(@) A Simple MPI Example (b) A Simple Example with Barri-

ers
Fig. 1. Simple MPI programs to illustrate Slack Inelasticity

system memory space (in cases3) or (ii) into the receiver’s space. In case (i), thé
associated with th&® can return immediately (in effecty’ is turned into a no-op In
case (ii),IW blocks till the entire message is received. A barie(MPI_Barrier)
is acollectivecall, meaning it must be invoked by all the processes. No process may
execute past it® call until all processes have issued thBicalls. However, a send that
is issued before a barrier may be alive at the time the instructiond3past executed.
Let Nat = {0,1,2...}, Bool = {F,T}, andBool, = {F,T,L}. Let P be the
number of MPI processes in an MPI program, with thefiDs (a.k.a MPI ranks) be
the setPID = {0...P — 1}. Let PID, = {0... P — 1} U {x}. Each MPI process is
viewed as a sequence of instructions, with lendths PID — Nat. For any function
[, its application to argumeritis written f;; for example,L, is the length of the first
process. The application of a two-ary functipto arguments andj is written f; ;, and
its partial application to one argumeiis written f;. Let the program counter values
be given byl ¢ PC = PID — Nat (I stands for “location”). We denote the individual
program counterg, ...lp_1. The MPI runtime is viewed as a special process with
process IDP and always at the same PC. et PID — Nat — OP be an MPI
program, whereOP € {S; ;(k), R; ;j(k), Wi ;((m,n)), B; ;} for i, j,k,m,n € Nat;
we often takeOP = {S, R, W, B, L }. For examplep, ...pp_1 are theP processes,
and thejth instruction of theth process ip; ;. Associated with any instructian ; is a
handle(i, j) uniquely identifying the instruction. The set of handlés= PID x Nat.
An MPI operationop € OP is thejth instruction of some processOne can write such
an operatiorvp; ;(...args...) wherej = [; andop € OP. Let f[i «] be function
update, i.ef[i — e] = (f \ {(i, f(0))}) U {(i,e)}.
Slack Inelasticity: Consider the example in Figure 3(a) in which the first senépf
i.e.Sp,1(1), aims to send a data payload (not shown) to proégssts corresponding
wait is W 2((0, 1)). The receive that this send will match withfg 5(0) whose corre-
sponding wait iSV; 4((1, 3)). The rest of the code can be read similarly. Suppose none
of the S are being treated as &f. This means that thd calls corresponding to th
will block. Therefore, the presence @f 5((1, 1)) in P; forcesS; 1(2) to match with
Ry.1(%). Finally, S 3(2) matchesk, 5(0). Since all the sends and receives are matched,
all the wait (1) calls unblock and the program terminates.

Now consider the case whefy 1 (1) of P, is treated as a’s®. In this caseWy 2
is, in effect, turned into a no-opvhich enables?, to executeS, 3(2). This leads to
Py's Sp,3(2) andPy’s S11(2) to be co-enabledith R, 1 (x). Suppose the MPI runtime

4

non-deterministically chooses to mat6hs(2) with R 1 («). This means thaR, 3(0)
of P, will no longer have a matching send — a deadlock!

In summary, if one adds buffering to sons¢; (%), the wait associated with this
send, sayWV; »((¢, 7)), is rendered a no-op, and this careak some of the completes-
before edgesThis may, in turn, co-enable some (seemingly unrelated) sépd&-)
with some wildcard receive, thus increasing non-determinism.

A Recap of POE: We use our current examples to illustrate two ideas — namely de-
liberate out of order execution, and dynamic rewriting — that already existedin

[4], and are part oPOEwgg also. Consider Figurfe I{b) (obtained by inserting a few
barrier B calls into Figur)), wher§, 1 (1) is still treated as a®. Even with these

Bs addedPy’s Sp,3(2) andPy’s S12(2) can still compete foR, 1 (x), because: (i) af-

ter issuing (but not completing) boty 5(2) and Ry 1 (*), the Bs can be issuednd
completed(ii) this now permitsS; »(2) to be also issued.

Suppose someone wants to build a dynamic model checker that explores the com-
peting sends individually: in our example, they want to pursue the interleaving caused
by matchingS; 2(2), and then in another interleaving purstigs (2). They will realize
that the presence of MPI barriers does not allow this, in general; Herg?2) cannot
be issued unlesS, 5(2) is also issued (due to the presence of Bg). Unfortunately,
if both sends are issued, the (unfair) MPI runtime rabyayspick Sy 5(2). POE gets
around this problems by intercepting the and delaying their issue into the MPI run-
time as late as possible without breaking completes-beforeur examplePOE will
collect (but not issuef 3(2), issue and complete the barriBr andthenissue either
So,3(2) or S1 2(2). Such dynamic reorderings are safe (Quarantees non-overtaking).

Second POE is capable of forcing specific matches to occur by rewrititg; ()
into Ry 1(1) and Rz 1 (2), and issuing two “packetshfatchesn §E3]) into the MPI run-
time, one containing S1,2(2), R21(1)} and the other containingSy 5(2), R21(0)}.

If we fire R, 1 () into the MPI runtime, we lose external control over which send will
match this wildcard receive.

3 MPI Semantics

The state of execution of an MPI program and its runtime is modeled using the triple
(p, 1, C). MPI program semantics is modeled through inference rules whetg@thaC'))

in the antecedent and consequent standg;fdt C) € ReachSet, whereReachSet is

the reached set of states. Changeg toodels instructions being consumed. Changes
to [models the PC advancing. is a set of communication records modeling the MPI
runtime state. For € C, ¢ = (pid, op, blocking, src, dest, handle, match, cpl, buff)
wherepid € PID, op € OP, blocking € Bool, src € PID,, dest € PID,
handle € H, match C H, andcpl, buff € Bool (standing for “completed” and
“buffered.”) Figurg 2 introduces foyprocess transitiongdenotedP —) that model how
MPI instructions are issued. Eagh— generates and adds one communication record
to C. Figure 3 introducesuntime transitiongdenotedR—). The R— help match and
complete the communication records by updatingrthech and cpl fields. Arun of

an MPI program is defined as any allowed sequend@-efandR— transitionsPOE

will be presented as amprioritized execution of these transitions

Definitions: Two transitiongnay be co-enableifithere is some state where both transi-
tions are enabled. Two transitions amdependeniff whenever they may be co-enabled

PS : _ <<p7l7c>>v Di,i; :Sllq() _
<<p1[ll <_J-Ll[l<_li+1}7cu{< 1(])7 7J-7.77J-7®7F’F>}>>

PR : <<p,lC>>, Dil; th()
(ol =10 — L+ 1,0 U{G, Rit, G), F, 5. L LB,))
(p,,C), pig; =Wir, ((i,5)
PW ol =11,L,C U {(3, VVlzz T.L, L, (), 0, F))
PB <<p,l,C>>, Pil; 7BLL

(pilli —1,1,CU{(i,Bis,, T, L, L, L,0, F, F)})
Fig. 2. MPI Process Transitions

in a state, (i) the firing of one does not disable the other, and (ii) the same state is attained
no matter which order they are fired in.

Process Transitions:Process transitions are defined through the inference rules in Fig-
uref2.PS models the issue of.é (send) operation of procegsat PCl;. The instruction

is consumed (modeled by[l; —L]), the PC advanceg[{ — [; + 1]), and a commu-
nication record is added into the MPI runtime (matching receive is found yet;pl

is false, andbuf f is F). Rule PR models the issuing of apecific receiv€ R). The
issuing of a wildcard receive call can be similarly modeled (not shown). We can see
from PW and PB that thelW or B function calls do not advance the PC. This helps
model the blocking behavior of these instructions. Since every process transition
creates a communication record, we associate a communication recorg withith

pi,;- A communication record is discarded only whervitatch # () and itsepl = T.
Otherwise, the communication record is considered to be alive. For example, a receive
must first bematchedwith a send and the receive operatior@npletedvhen the data

is transferred from send buffer to the receive buffer.

Runtime Transitions: Runtime transitions help define how transitions help complete
MPI operations. The relatiocompletes-beformentioned on Pagé 5 will be defined as
CB = IntraCB U InterCB, where InterCB will be defined in Sectiofi]4. We now
define Intra CB— the relation that defines how instructions within a process complete
(hence formalizing non-overtaking).

Definition 1. IntraCB is the smallest transitively closed subseCok C s.t. forc; ;,
cix € Cwherej <k, (c; ;,ci i) € IntraCB whenever one of these hold:

¢ j.op=25;;(l) and ¢; x.op = S; (1) wherel € PID

Cij- op R; ;(1) and ¢; .op = R; 1 (I). wherel € PID,
Ru(*) and ¢; y.0p = R; ,(1). wherel € PID P

Cij-0 (l and ¢; .0p = WZ #((i,7)) wherel € PID

cij-op = R; j(1) and ¢; .op = W; ({3, j)) wherel € PID,

Cij- Op Bz,J orc; j.op=W;;

Cij

ok wnpE

If (cij,cik) € IntraCB, we say that; ; is IntraCB predecessor of; ;. Let
s.C denote the the set of communication records that are alive in statée now
introduces.Cr C s.C to denote theeady set of communication records that can be
matched/completed

2 This condition covers the case where the first receive is from any source, while the previous
case covers two receives from the same source.

Definition 2. Given a states = (p,[,C), ¢;x € s.C andV(c; j,cix) € IntraCB,
s.Cr={cir | cirbuff =T V (cip.match =0 A ¢; j.match #0) VvV
(Ciw-cpl = F A ¢;p.match # 0)}

Lets.Cy C s.Crbe: s.Cv ={ce€Cgr | c.match=0 A c.buff = F}

s.C)y is also called as co-enabled set of communication records. Basicélly, is the

set of communication records that have not yet matched, and are eligible for matching.
They eventually complete throud®— transitions, provided that thelntraCB prede-
cessors have been matched. We can show that if ¢;) € IntraCB, then by the

MPI semantics; ; € s.Cy < ¢ 1 ¢ s.Cp. Thatis,c; ; can never be co-enabled with
¢,k We can now define MPI runtime transitions, as shown in Figjire 3. We employ a
convenient notational abbreviation introduced through a simple example:

— For a sets and an itenm, let s + « denotes U {x}.

— LetC : ¢ ;[match «— Q + (y, j)] stand for “the se€’ except that the membey;, ;
in it has itsmatch component updated by the addition {@f j).” Here, @ stands
for ¢, ;.match (a notation inspired by TLA+).

<< p7l7c >>7 Cax,iy Cy,j € CJVI? Ca,i-Op = RI,i(y)7 Cy,j-0D = Sy,j(l‘% y e PID

RR-: (0.5, C : e i[match — @+ (y, /)])
RRx : << pvlac >>7 Cx,i, Cy,j € S.CA{,CI,i.Op = Rz,i(*), Cy,j-OPp = Sy,j(fE), S PID
' (.1, C : cailmatch — @+ (y, j), src «— y,op — R(y)|)
RS : {(p,,C)N, ¢ j € s.Cum,c, € s.Cr, cij.op=25;;(k), cki.op= Ri,i(i), cki.match = {(i,5)}
’ {(p,l,C : ¢ jlmatch — Q+ (k,1),cpl — T| ci[cpl — T]))
RW : << palyc >>7 Ci,k [S S-C]Wa Ci,k-Op = lek(<l7.7>)
" p,li — Lk +1],C : cix[match — Q@+ (i, k), cpl — T]))
RB : << p7l’c >>7 Ci - S~C]Wy ‘ C1 |:| PID | Vci,j eC: Ci,j-Op = Bi,j

{(p, i — li; +1],C : Vei 5 € C1 ¢y 5[match — @+ (4, 5),epl — T)

Fig. 3. MPI Runtime Transitions

Consider thR R transition as an example. It fires precisely when a specific receive
finds a matching send. ConsidRR «: it fires when a send targeting the process of this
receive is found. Notice that we set the: of this receive tqy, thus modeling dynamic
rewriting of wildcard receives.

POE: The Hasse diagram given in Figure 4(a) defines how POE works by firing tran-
sitions from higher toward lower priority order (the arrows point towards lower priori-
ties). GivingRRx the lowest priority helps force the maximal set of sends to match a
wildcard receive (otherwise, th81 condition [9] is violated). The proof of soundness
for POE algorithm is given iri [3].

4 ThePOEy\sg Algorithm

To model slack, we add the MPI runtime transition calRSB shown in Figuré¢ 4(¢)

when there is buffering available for a Send @htransition). RSB simply sets the
completion bit, as the system buffer can instantaneously absorb the message even before
a match is found. When a send in buffered, tieoperation corresponding to the send

{p,1,C), cij € 5.Cr, cijbuff

\RR* \RR*, (p,l,C :cijlepl — T,buff — F])
(a) POE (b) POEMSE

(c) RSB Transition

Fig. 4. Prioritized Execution Orders fa?OE andPOE sk
turns into a no-op, and all communication records generated by it (including within
IntraCB) are removed. Figufe 4(b) gives the priority execution order witfRIS8
transition. In the MSE phase of PQf g, the sends endowed with slack are fired as
per theRSB rule. To determine these sends, we need the notiomefrC B which
establishes orderingerossprocesses, building ovénitraC B, as now explained.

4.1 InterCB Edges and Path Properties
The theorems in this section are proven in our technical report [3].

Definition 3. Intra(c; ;) = {ci x| (¢ij,cix) € IntraCB}

Theorem 1. For ¢; j, ci; € s.Cp @nde; j.op = R; j(*) andcy j.op = Sy (), for any
c € Intra(cy,), and for any state’, ¢; ; € s.Cyy < ¢ ¢ s'.Cyr. Thatis, ifR; ;(x) is
matchable withSy, ;(¢) and are co-enabled, then dm¢raC B successor of}, ;(i) can
never be co-enabled witR; ;(x).

Theorem 2. For two communication records ;, ci; such thaic; j.op # R; ;(*) and
ck1.0p # Ry j(%), if (i,7) € cr.matches then for allc € Intra(c; ;) and any state
sees.Cy s cepy ¢ s .Cu.

The above theorems say thatif;, c;.; are co-enabled in some statehenc; ; and
any communication record imtra(cy,;) can never be co-enabled. We defingerC B
based on the above theorems.

Definition 4. InterC B is the smallest transitively closed subsetbik C' such that
for some stata:

1. If ¢; j,c1,1 € s.Cyr are such that; j.op = R; j(*) and ¢ i.op = Sk,(i), then
Ve € Intra(ck,), (¢ j,c) € InterCB.

2. Foracommunication record; ; wherec; ;.op # W; ;((i,m)),V(k,l) € ¢; j.matches,
Ve € Intra(ck,), we have(e; ;,c) € InterCB.

The InterC B is constructed at the end of an interleaving.

Definition 5. For a set of communication records, define

CB(C) = IntraCB(C) U InterCB(C'). A completes before graph for a given inter-
leaving (executionyy, s1,...is CBg = (V, E) whereV = s,.C U 51.C... U s,.C,
andE = CB(V).

Co-enablednessFrom Theorems |1,|2, we can show that if there is a path frgo

¢k, in CBg, thene; ; andcy,; can never be co-enabled.

Slack Introduction lllustration: Figure[5(d) is theC'B(; obtained for the MPI pro-

gram of Figurg 1(3) for the interleaving generated by B&E algorithm during the

initial slack-free execution. Here, the arrows within a process dendtingCB and

those across denotinfrterCB. Notice thatall paths fromR; 1 (x) t0 Sy 3(2) involve
Wo.2((0,1)). Thus, if we rendeiV, o ({0, 1)) into a no-op by firingS, 1 (1) as ans?, the

dotted path is broken, making ;(2) co-enabled withR, ; (x), leading to a deadlock

as discussed. However, if there is some path that does not contain any waits associated
with a send, then introducing slack does not break such paths, as shown inFiglire 5(b).
POEwusE avoids pursuing such unproductive slack introductions.

e P n |

[& A n] So1(1) S14(2) Ro.1(+)
s — Voo (0.1)) nafLy) Swaae)
Rog(+) Ry 5(0) 255.4(0)
Wo,0((0.3) Wia((1,3)) Wo,a((2,3))
S0.5(2 Ry 5(%)
<‘m),“(<o, 5)) <‘\rvz,“(<2, 5))
(a) Path that can be broken (b) Path that cannot be broken

Fig. 5. Example showing IntraCB, InterCB and Path

Minimal Wait sets: In the following, we assume thaf ; corresponds to wildcard re-
ceive and;, ; corresponds to a potential matching send.

Definition 6. For a given communication recordwith c.op = W, onpath(c) is the
set of all simple paths @ B on whichc occurs.

Definition 7. Letw be the set of all simple paths 6fBg on whiche; ; and ¢, both
appear. LetV,; = {c | c.op=W({m,n)) A cmn.0p = Smn(...) A empbuff =
F A Jp € m: p € onpath(c)}. These are thé/s which can be turned into a nop,
and they lie on somg € 7. A minimal wait sefi?,,;, is the set of waits such that
() Winin € Wy, and (i) for any pathp € 7, and for any two waitsv” and w” in
Winin, We havew' € p < w” ¢ p, and furthermore (i), .y, . onpath(z) = .
That is, there is exactly one wait ii¥,,,;,, for any path between; ; andcy;, but that
all paths are covered by some (not necessarily distifict)

Theorem 3. Given a set of paths betweer; ; andcy, ;, findingV,.,;,, is NP-Complete.

Proof. (Sketch; discussions near Definitiph 8) The reduction is from the monotone-
1-in-3 sat to our problem. The above problem is in NP. Given a certifidatewe
can easily check that each path has exactly one wditinA monotone-1-in-3 SAT

formula f is 3-CNF that has no negations and must be satisfied by assigning exactly
one literal in every clause to true. Given a formiildet v represent the set of variables
andc be the set of clauses.represent$V,;. We construct a completes-before graph
CBg = (V, E) with V = v and for every clause; = (x; V x; V), we add an edge
betweerw;, z; andx;,). Thatisz; — x; — x5 forms a path in the graph. We also
markz; and source vertex ang, as sink vertex. A path consists of exactly one source
and one sink vertex. IfV,,,;,, exists for each of the paths, th¢rcan be made true by
assigning true to the variables corresponding to verticék,jp,, and vice verse [3].

Theorem 4. Finding all the minimal wait sets is #P-Complete.

Proof. From Theorenf 4, we have a P-time reduction from monotone 1-in-3 SAT to
minimal wait set problem. Also, the number of solutions to a formula the same as
the number of minimal wait sets. So, finding all the minimal wait sets is #P-Complete.

Notes: In principle, |w| can be exponential, but in practice, it is smalen so,our
complexity results show that we cannot avoid a cost that is exponentjal iwhen
determining all minimal wait sets. This justifies the use of a subset construction method
for finding all minimal wait sets) WS, as captured in Definitidr] 8. While exponential,

it works well in practice. We also note that in some cases, we may be forced to pick
more than onéV per pathp. These correspond to SAT instances that are not 1-in-3
SAT. Definition[$ handles these situations also correCily [3].

Definition 8. Given a set of paths betweerr; ; andcy;, let W,;; be the set of waits
which can be turned into a no-op. The minimal wait sef8'S = {W,.;, € Wy}

are the family of set of waits such that for eddh,;,, € MW .S, turning all the waits
within W,,;,, disconnects; ; andcy, ;, but no proper subset 6¥,,;, has this property.

4.2 Minimal Slack Enumeration

We first provide an algorithm to compufé S based on Definitiop|8. Given a set of
pathsm betweenc; ; andc;, (i) take as input a set of paths (i) determineW,;,
(iii) build the powerse (W), (iv) sort it by ascending cardinality, and (v) eliminate
from the powerset any; such thats; O s;, ands; itself disconnects; ; andcy ;. The
resulting powerset is th&/ WS (seel[3] for a pseudo-code that defing$y’s).

Recall that all these steps occur after the initial slack-free execution according to
POE. Now we must re-execute the MPI program being verified by buffering the sends
corresponding ta/ WS, and replaying the execution. We arrange for all this to occur by
(i) modeling the buffered sends SéEkii) modeling the firing of thes&® throughRS B
(Figure[4(B)), and (iii) marking when thedeS B transitions must fire by maintaining
backtrack set¢idea inspired by [1]) as described by dOE\sg algorithm described
in Figurg 4.2. Figurg 4]2 gives a full descriptionRDEysr, including the initial slack-
free execution and the later backtrack/replay ¥$E.

In addition toC'r andC); defined in§[4, we add the following to every state

— s.trans. Set of P— or R— transitions.

% In implementingPOEse, ISP implementsS® by providing ISP’s own buffer resources to
fake “ample buffering.” Therefore, ISP can be run on any machine and still simulate slack.

10

s.backtrack: The set of transitions that must be executed from stdtefuture
interleavings (replays).

s.done: The set of transitions that have already been executed frgnitially ().
s.curr: The transition executed from this state in the current interleaving.

Given a transitiort, Proc(t) gives the set of processes involved in the transition
(e.g, R— transitions occur by matching and R of different processes).

— For transitiort, ¢.c is the set of all communication records involvedin

1: POEusE(so, statevec) {
2. statevec.pushéo);
3: ¢ =GetHighestPriorityTransition(trans — s.done);
4: so.backtrack = so.backtrack U {t};
5: while (lempty(statevec)) {
6: Generatelnterleaving{atevec);
7 C B¢ = GetCompletesBeforeGraptiGtcvec);
8: for (i = statevec.size(}-1;i > 0; i——) {
9: s = statevedi];
10: UpdateBacktrackSet(C Bg);
11: }
12: for (i = statevec.size(}-1;1 > 0; i——) {
13: if (statevec[i].backtrack =0) {
14: statevec[i].pop();
15: } else{
16: break;
17: 1))

Fig. 6. Full POE,;s g algorithm

Figureg[4.2 shows the fulPO Es s algorithm. The algorithm takes as input the initial

statesy andstatevec which is a partial state list. The algorithm first generates an inter-

leaving as shown in Figufg 7. While generating the interleaving, the algorithm uses the

Hasse diagram in Figufe 4{b) to determine the priority order among the transitions. The

function Execute executes the transition and generates a next state as the result. Once

the interleaving is generated, the algorithm generates the completes-befor€'d?aph

as shown in line 5 of Figufe 4.2. The algorithm now invokigalateBacktrackSet

for each state in the interleaving where theurr is an RR« transition.
UpdateBacktrackSet (Figure[8). takes th€’ B and the state whose back-

track set must be updated. The only states considered are those involve®iR-an

transition in the current interleaving with the receRg(x). Line 3 checks if there is a

matching send co-enabled with; and adds it tos.backtrack. If there is some send

S;(4) in CBg such thatS; (i) and R;(x) are not co-enabled in(line 7), the algorithm

(line 8—32) finds all the paths betweenR; (x) andS; (i) in C'Bg. If there are no paths,

then it finds the transition involving procegsn s.trans and adds it tcs.backtrack.

Otherwise, all the transitions intrans are added te.backtrack. However, ifr #

(lines 15 — 32), the algorithm finds all the minimal wait setsinwaitsets (line 15).

If minwaitsets = () then it is not possible fo; ; andcy, ; to ever be co-enabled. The

algorithm returns in this case. Otherwise, it looks for the sends corresponding to waits

in minwaitsets available ins.Cr and creates neRRSB transitions for each of these

(line 24). One of these transitions are added todhecktrack (line 29). (Note that

11

eachp € minwaitset corresponds to set of all sends that must be buffered at the same

time. In our implementation, the backtrack set is a set of sets and can execute multiple
independent transitions from a state. The algorithm in Figlire 8, though correct, may

generate redundant interleavings)s loes not sends any sends3y;,,, the backtrack

set is updated with.trans (line 32). The soundness proof of PQE g is given in [3].

5 Experimental Results, Concluding Remarks

Number of interleavings
(notice the extra yet necessary| POEnsE POFE
interleavings ofPOFE v sE)
sendbuff.c 5 1
sendbuff-la.c 2 (deadlocked) 1
sendbuff2.c 1 1
sendbuff3.c 6 1
sendbuff4.c 3 1
sendbuff5.c 1(deadlocked)l(deadlocked)
ParMETIS, 2 1
Overhead ofPO Ex sk On ParMetis
(runtime in seconds POEysE POFE
(x) denotes x interleavings)
ParMETIS (4procs) 20.9 (1) 20.5(1)
ParMETIS (8procs) 93.4 (1) 92.6 (1)
ParMETIS. 18.2 (2) 18.7(2)

Table 1. Table 1. Experiment Results: ParMETI®& ParMETIS with buffering.
ParMETIS. is ParMETIS modified to use wildcard receives.

1: GENERATEINTERLEAVING(statevec) {
2. s =stateved0];
3: for (i=0;i < statevec.size()-1; i++) {
4: s = Executeftatevec|i]. curr);
5 }
6: s.curr = GetHighestPriorityTransition(backtrack);
7: s.done=s.doneU {s.curr};
8: s.backtrack = s.backtrack — {s.curr}
9: while (s.trans — s.done # 0) {
10: s = Execute§.curr);
11: s.curr = GetHighestPriorityTransition(trans — s.done);
12: s.done = s.done U {s.curr};
13: }}

Fig. 7. Algorithm to generate an Interleaving

We provide three classes of experimental results (Table 1). First we report vari-
ants of a contrived example callegndbuff (see [[3] for details) where we show
thatPOEysg performs the minimal number of extra interleavings dv€YE to ensure
soundness in the presence of slack. All of these examples ext@Essg’s capa-
bilities to detect the different matchings as well as deadlocked situations. For each of
the sendbuff variant that we constructed, POE is only able to detect one possible match-
ing, while POEysE allows severalsend’s to buffer and thus discovers several more
interleavings. We also reproduced our example in Fifurd 1(a) as sendbuff-1a.c where
our algorithm indeed caught the deadlock at the second interleaving, Whe(®) is

12

1: UPDATEBACKTRACK(s, CBg) {
2 Ci,j.0p = Ri,j(*), Ck,1.0p = Sk,l(i)
30 if (i, € sccurric Acg € s.Cm A ey € s.curr.c) {
4: t = GetRR*Trans(; ;, ¢k, s.trans);
5: s.backtrack = s.backtrack U {t}
6: }
7 if (Hck,z € CBg : Ck,l ¢ S.CM) {
8: w = FindAllPaths ¢; ;, cx,1, CBg);
9: if (m=0){
10: if (3t € s.trans A j € Proc(trans))
11: s.backtrack = s.backtrack U {t},
12: else
13: s.backtrack = s.backtrack U s.trans;
14: } else{
15: minwaitsets = MinimalWaitSets fr, Wau);
16: if (minwaitsets = ()
17: return;
18: for each (p € minwaitsets) {
19: Smin =GetSendsOfWaitsp);
20: rsbtrans = 0;
21: if (Smmin Ns.Cr # 0) {
22: for each(c € Smin Ns.Cr) {
23: chuff =T,
24: t = new RSBTrans(c);
25: s.trans = s.trans U {t};
26: rsbtrans = rsbtrans U {t};
27: }
28: if (rsbtrans # 0) {
29: t = RandomSelectsbtrans);
30: s.backtrack = s.backtrack U {t};
31: } else{
32: s.backtrack = s.backtrack U s.trans;
33 1

Fig. 8. Algorithm to update backtrack sets

matched withR; ; (x). Next we study large realistic examples that show B@EysE

adds virtually no overheads. We used ParMETIS, a hypergraph partition library (14K
LOC of MPI/C), as a benchmark for measuring the overheald @E s (shown in
Table[1 as ParMETIS (xprocs) where x is the number of processes that we ran the
benchmarks withPar M ETIS, is a modified version where we rewrote a small part

of the algorithm using wildcarttecv’s). In most of our benchmarks where no ad-
ditional interleavings are needed, the overhead is less than 3%, even in the presence of
wildcard receives, where the new algorithm has to run extra steps to make sure we have
covered all possible matchings in the presence of slack. Finally we study large examples
with contrived slack inelasticity situations inserted into them, which show that should
slack inelastic behaviors arise in practi@)E would (silently) behave unsoundly,
while POEysg would (silently, and with minimal overheads) introduce the necessary
re-executions, with certain (minimally chosen) sends endowed with slack that certainly
introduce new behaviors, including potentially buggy ones. This is reflected in[Table 1
asParM ETIS b, where we rewrote the algorithm of ParMETIS again, this time not
only to introduce wildcard receives, but also to allow the possibility of a different or-

13

der of matching that can only be discovered by allowing some cdgaimd’'s to be
buffered. Our experiment shows tHaOE) ;s successfully discovered the alternative
matching during the second interleaving. So far, we have never encountered practical
examples that are slack inelastic. However, the very purpose of a tool such as ISP in-
corporatingPOE\sg is to keep the user worry-free about soundness when verifying
thousands of large programs.

In conclusion, we provide the first known approach to verify slack inelastic pro-
grams dynamically, while avoiding theiva approach of considering every send with-
/without slack. To model MPI's action co-enabledness relation that is governed by
MPI's weak ordering semantics and slack, we define a formal semantics for MPI that
delicately separating out the notionsaafmpletionand matchingof MPI communica-
tions. We then define the notion of completes-before paths, and show that two MPI ac-
tions separated by such a path not co-enabled. Then we show that slack addition to MPI
sends turn the associated wait operations into no ops. If these waits lie on completes-
before paths, these paths are broken, thus adding more sends that can match a wildcard
receive. We show the complexity of optimally determining minimal slack enumeration.
Finally we present ouPOEysg algorithm integrating/SE andPOE.

We are releasing a full-fledged version of ISP implementif§f that runs on Unix,

Mac, and Windows VisualStudio, and comes with over 120 medium-to-large examples,
and full install scripts at our web sit2![3]. In future, we will closely examine whether
we can avoid the step in line 33 of Figure 8, and also whether static analysis methods
may save some effort durin/ SE.

References

1. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In J. Palsberg and M. Abadi, editoROPL, 110-121. ACM, 2005.

2. R. Manohar and A. Martin. lack Elasticity in Concurrent Computing. In Intl. Conf. on the
Mathematics of Program Constructidrecture Notes in Computer Scient422.

3. S. Vakkalanka et al., Dynamic Reduction based Verification of Slack Inelastic Mes-
sage Passing Systemshttp://www.cs.utah.edu/formal_verification/
cav09-slack.html

4. S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby. Dynamic verification of MPI pro-
grams with reductions in presence of split operations and relaxed orderings. In A. Gupta and
S. Malik, editors CAV, Springer LNCS 5123, 6679, 2008.

5. S. V. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey of MPI related debuggers
and tools. UUCS-07-01http://www.cs.utah.edu/research/techreports.
shtml .

6. A. Vo, S. Vakkalanka, G. Gopalakrishnan, R.M. Kirby. Formal Verification of Practical MPI
Programs. In: PPoPP (2009) to appear.

7. S. F. Siegel and G. S. Avrunin. Analysis of MPI Programs. Technical RépdrCS-2003-
036, Department of Computer Science, University of Massachusetts, 2003.

8. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standBadallel Computing22(6):789-828, 1996.

9. E. M. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, Dec. 1999.

10. G. Karypis. METIS and ParMETIS. http://glaros.dtc.umn.edu/gkhome/views/metis.
11. M. Musuvathi and S. Qadeer. Fair stateless model checking. In PLDI '08 362-371, New

York, NY, USA, 2008. ACM.

14

http://www.cs.utah.edu/formal_verification/cav09-slack.html
http://www.cs.utah.edu/formal_verification/cav09-slack.html
http://www.cs.utah.edu/research/techreports.shtml
http://www.cs.utah.edu/research/techreports.shtml

12. P. Godefroid, B. Hanmer, and L. Jagadeesan. Systematic software testing using VeriSoft: An
analysis of the 4ess heart-beat monitell Labs Technical JournaB(2), April-June 1998.

13. Rupak Majumdar, Koushik Sen: Hybrid Concolic Testing. ICSE 2007: 416-426

14. http://www.multicore-association.org

15

http://www.multicore-association.org

	Dynamic Reduction based Verification of Slack Inelastic Message Passing Systems

