
Dynamic Reduction based Verification of
Slack Inelastic Message Passing Systems?

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah, Salt Lake City UT 84112, USA,
http://www.cs.utah.edu/formal verification

Abstract. In message passing distributed systems,blocking sendcommands can
acquire anon-blockingbehavior if the underlying runtime provides sufficient
slack, i.e., buffer space to fully absorb messages being sent. Programs in many
concurrent languages areslack elastic, i.e., adding slack does not introduce bugs.
However, programs using MPI – the most widely used API for parallel program-
ming – are slackinelastic. We provide the first approach we know to verify slack
inelastic programs, while avoiding the naı̈ve approach of considering every send
with/without slack. In MPI programs, added slack causes new behaviors by un-
blocking sends, causinglater sends to issue. The new sends can compete for
non-deterministic (wildcard) receive matches, adding new behaviors. We char-
acterize the complexity of Minimal Slack Enumeration (MSE). We then provide
a practical algorithm calledPOEMSE that first considers a slack-free execution,
performs MSE to discover where slack matters, and integrates dynamic partial
order reduction and MSE. Experimental results show that our new algorithm is
efficient on real examples, while handling slack inelasticity soundly.

1 Introduction

A majority of large-scale parallel programs used in science and engineering research
are written using the Message Passing Interface (MPI [8]) application program inter-
face (API), and are run on expensive supercomputers consisting of thousands of CPUs.
An MPI program, typically written in languages such as C, represents a large-scale
distributed computation, employing communication and synchronization calls to other
MPI processes through MPI/user library functions. The MPI library is large, consist-
ing of over 300 functions; user libraries are also large, containing legacy units. Many
aspects of an MPI program are unknown statically (e.g., the process targeted by an
MPI send can be described through expressions). All this makes dynamic methods
based on direct execution of the code [11,12,13] a practical approach for verification.
Since MPI programs are highly optimized for performance, they are prone to many bugs
such as deadlocks, MPI object leaks, assertion violations, and unintended communica-
tion matches (also known as communication races). Conventional MPI program testing
methods are inadequate for tracking down these bugs mainly because they do not have
schedule (interleaving) control methods such as partial order reduction (POR) that min-
imize wasted interleavings. Partial order methods are especially important for MPI, as
MPI processes compute in separate memory spaces, and also most MPI calls commute.

? Supported in part by Microsoft and NSF award CNS00509379

Putting all these facts together, dynamic partial order reduction (DPOR) methods are
essential to handle large MPI programs.

One hopes that message passing distributed systems areslack elastic. That is, in the
absence of slack (system-provided buffering), sends degenerate into rendezvous sends,
and with slack, theysafely turn into non-blocking sends (conducive to higher over-
all program performance) –i.e., no new deadlocks or safety violations are introduced
by adding slack. Unfortunately, MPI programs areslack inelastic: increased system-
provided buffering can introduce these bugs. Our contribution here is a dynamic model
checking algorithm that correctly and efficiently handles the slack inelasticity of MPI.
Background: Our previous work [4,6] contributed to dynamic stateless verification of
MPI programs by offering a tool called ISP that has been used to check many prac-
tical MPI programs. One recent result [6] pertaining to ISP is the model checking of
a 14KLOC MPI program with multiple processes in about five seconds.1 The DPOR
algorithm used in ISP is calledPOE (Partial Order considering Elusive interleavings).
In addition to reducing interleavings, POE also ensures that the required interleavings
are actually exercised (§ 2). However, POE does not handle MPI’s slack inelasticity.
Related Work: In [2], language restrictions that disallowed non-deterministic send/re-
ceive message matches were proposed by Manohar and Martin as a means of guarantee-
ing slackelasticity(they coined this term). Siegel and Avrunin [7] made a very similar
observation – that MPI programs withoutwildcard receivesare slack elastic (adding
slack may eliminate deadlocks, but never introduce them).Wildcard receivesare non-
deterministic receive statements that can match one of manycompetingsends targeting
this receive. [7] proposes the following verification approach: verify an MPI program
in their subset by allocatingzero(we strictly meaninsufficient) slack to the sends. If no
deadlocks exist, it is possible to conclude that slack allocation will not introduce dead-
locks. It is helpful to keep in mind that programs written within slack elastic subsets of
MPI may still have deadlocks,e.g., when two constituent processes first post message
sends targeting each other, and subsequently post receives matching the sends (the so
calledhead-to-headdeadlocks). Such deadlocks vanish when slack is allocated.
Importance of handling slack inelasticity: Past research has studied how lossy buffers
affect model checking; we are unaware of any work on how slack addition affects model
checking. There is an explosion of software libraries and APIs under consideration
for programming parallel systems (e.g., the Multicore Communications API [14]): the
presence of non-deterministic receives renders any such API slack inelastic. The user
community of MPI is very large (e.g., every proposed Petascale supercomputer will
primarily run MPI) and very diverse, making it mandatory to have the ability to verify
MPI programs outside of the aforesaid syntactic restrictions. In addition, MPI libraries
often employ wildcard receives.
Contributions, Roadmap: Given an MPI program,POEMSE can determine all the
sends in the program that can match each instance of a wildcard receive. It does this
by exactlycomputing the set of sends that can be co-enabled with the receive. This is
a non-trivial calculation in MPI as explained momentarily. While co-enabledness over-
approximation is easier (and may serve other purposes, such as computing persistent

1 Without any POR, just five MPI processes with only five instructions each can generate in
excess of1010 interleavings – impractical for a dynamic model checker.

2

sets as in [1]), it does not serve our purposes. For us, an over-approximated set of
co-enabled sends will contain those that cannot match a receive. If a dynamic model
checker’s scheduler is asked to force these matches, it will deadlock.

Computing co-enabledness is tricky in MPI because MPI function invocations can
complete out of program order– e.g., if a process P1 sends a megabyte to P2 and then
a byte to P3, there is no reason why the second send should not be allowed to finish
first. However, if both sends are destined to P2, the MPI runtime must finish them in
issue order, in order to guaranteenon-overtaking[8] (between any pair of processes,
messages are to be delivered in FIFO order). In§ 3, we formally define thecompletes-
beforerelation to capture MPI’s required completion ordering. Using completes-before,
we can accurately determine whether a sendS and a potentially matching wildcard
receiveR can be co-enabled.

This work shows that slack addition also affects co-enabledness fundamentally.
ThroughPOEMSE, we can determine the minimal set of sendsS1 . . . Sn that must
be provided slack in order to allowsome otherS andR to be co-enabled. We call this
calculation theminimum slack enumeration(MSE) problem. MSE is a search problem
over the completes-before graph of the execution whose complexity is shown to be
#P-complete (§ 4). Finally,POE, MSE, and the DPOR algorithm of [1] are integrated
to form our finalPOEMSE algorithm. InPOEMSE, we employ two alternating phases
of state space reductions: interleaving reduction through POE based DPOR, and slack
enumeration reduction through MSE. In summary, ournew results in this paper are:
(i) the formalization of MPI that captures non-overtaking as well as slack (Section 3),
and the definition of completes-before based on this semantics, (ii) a new formulation
of POE [4] through prioritized execution of the semantic rules (Figure 4(a)), (iii) the
POEMSE algorithm, and (iv) experimental evaluation on realistic examples. In [3] we
describe how we have validated our MPI semantics.

2 Illustration and Formal Modeling of MPI
We begin our presentation of MPI’s formal semantics by noting that individual MPI
processes compute in separate memory spaces, and interactonly through MPI calls.
MPI programs are required to terminate, with all processes callingMPI_Finalize .
This meets the acyclic state space condition of [1]. This also permits us to model MPI
processes as a straight-line abstract MPI call sequences defined by the control flow, and
leave out all C constructs (see Figure 1; in [3], we present the C/MPI codes).

The MPI function calls that we consider in this paper are send (S), receive (R),
wait (W), and barrier (B) (our implementation deals with well over 60 MPI functions,
sufficient to write a large class of MPI programs).S stands for MPI’s non-blocking
send – calledMPI_Isend in the MPI library. An invocation ofS initiates sending in
the background, and lets the invoking process proceed with its execution. Similarly,R
stands for MPI’s non-blocking receive, namelyMPI_Irecv , which initiates receive
in the background.W stands for MPI’sMPI_Wait function. Such a call refers to a
previously issuedS or R via handles. Frequently, programmers treat the interstices of
anS and the followingW as a delay slot, filling it with unrelated computations. We use
Sb to denote an instance ofS for which the MPI runtime provides adequate buffering.

An invocation ofW that refers to anS operation must block until theS had a
chance to copy its message out of the process memory space, and into either (i) the

3

P0 P1 P2
S0,1(1) S1,1(2) R2,1(∗)

W0,2(〈0, 1〉) W1,2(〈1, 1〉) W2,2(〈2, 1〉)

S0,3(2) R1,3(0) R2,3(0)

W0,4(〈0, 3〉) W1,4(〈1, 3〉) W2,4(〈2, 3〉)

(a) A Simple MPI Example

P0 P1 P2
S0,1(1) B1,1 R2,1(∗)

W0,2(〈0, 1〉) S1,2(2) B2,2

S0,3(2) W1,3(〈1, 2〉) W2,3(〈2, 1〉)

B0,4 R1,4(0) R2,4(0)

W0,5(〈0, 3〉) W1,5(〈1, 4〉) W2,5(〈2, 4〉)

(b) A Simple Example with Barri-
ers

Fig. 1.Simple MPI programs to illustrate Slack Inelasticity

system memory space (in case ofSb) or (ii) into the receiver’s space. In case (i), theW
associated with theSb can return immediately (in effect,W is turned into a no-op). In
case (ii),W blocks till the entire message is received. A barrierB (MPI_Barrier)
is a collectivecall, meaning it must be invoked by all the processes. No process may
execute past itsB call until all processes have issued theirB calls. However, a send that
is issued before a barrier may be alive at the time the instructions pastB are executed.

Let Nat = {0, 1, 2 . . .}, Bool = {F, T}, andBool⊥ = {F, T,⊥}. Let P be the
number of MPI processes in an MPI program, with theirPIDs (a.k.a MPI ranks) be
the setPID = {0 . . . P − 1}. Let PID∗ = {0 . . . P − 1} ∪ {∗}. Each MPI process is
viewed as a sequence of instructions, with lengthsL ∈ PID → Nat . For any function
f , its application to argumenti is writtenfi; for example,L1 is the length of the first
process. The application of a two-ary functionf to argumentsi andj is writtenfi,j , and
its partial application to one argumenti is writtenfi. Let the program counter values
be given byl ∈ PC = PID → Nat (l stands for “location”). We denote the individual
program countersl0 . . . lP−1. The MPI runtime is viewed as a special process with
process IDP and always at the same PC. Letp ∈ PID → Nat → OP be an MPI
program, whereOP ∈ {Si,j(k), Ri,j(k),Wi,j(〈m,n〉), Bi,j} for i, j, k,m, n ∈ Nat;
we often takeOP = {S, R,W,B,⊥}. For example,p0 . . . pP−1 are theP processes,
and thejth instruction of theith process ispi,j . Associated with any instructionpi,j is a
handle〈i, j〉 uniquely identifying the instruction. The set of handlesH = PID ×Nat .
An MPI operationop ∈ OP is thejth instruction of some processi. One can write such
an operationopi,j(. . . args . . .) wherej = li andop ∈ OP . Let f [i ← e] be function
update, i.e.f [i← e] = (f \ {〈i, f(i)〉}) ∪ {〈i, e〉}.
Slack Inelasticity: Consider the example in Figure 1(a) in which the first send ofP0,
i.e. S0,1(1), aims to send a data payload (not shown) to processP1. Its corresponding
wait isW0,2(〈0, 1〉). The receive that this send will match with isR1,3(0) whose corre-
sponding wait isW1,4(〈1, 3〉). The rest of the code can be read similarly. Suppose none
of theS are being treated as anSb. This means that theW calls corresponding to theS
will block. Therefore, the presence ofW1,2(〈1, 1〉) in P1 forcesS1,1(2) to match with
R2,1(∗). Finally,S0,3(2) matchesR2,3(0). Since all the sends and receives are matched,
all the wait (W) calls unblock and the program terminates.

Now consider the case whenS0,1(1) of P0 is treated as anSb. In this case,W0,2

is, in effect, turned into a no-op, which enablesP0 to executeS0,3(2). This leads to
P0’s S0,3(2) andP1’s S1,1(2) to be co-enabledwith R2,1(∗). Suppose the MPI runtime

4

non-deterministically chooses to matchS0,3(2) with R2,1(∗). This means thatR2,3(0)
of P2 will no longer have a matching send – a deadlock!

In summary, if one adds buffering to someSi,j(k), the wait associated with this
send, sayWi,k(〈i, j〉), is rendered a no-op, and this canbreak some of the completes-
before edges. This may, in turn, co-enable some (seemingly unrelated) sendsSp,q(r)
with some wildcard receive, thus increasing non-determinism.
A Recap of POE: We use our current examples to illustrate two ideas – namely de-
liberate out of order execution, and dynamic rewriting – that already existed inPOE
[4], and are part ofPOEMSE also. Consider Figure 1(b) (obtained by inserting a few
barrierB calls into Figure 1(a)), whereS0,1(1) is still treated as anSb. Even with these
Bs added,P0’s S0,3(2) andP1’s S1,2(2) can still compete forR2,1(∗), because: (i) af-
ter issuing (but not completing) bothS0,3(2) andR2,1(∗), theBs can be issuedand
completed, (ii) this now permitsS1,2(2) to be also issued.

Suppose someone wants to build a dynamic model checker that explores the com-
peting sends individually: in our example, they want to pursue the interleaving caused
by matchingS1,2(2), and then in another interleaving pursueS0,3(2). They will realize
that the presence of MPI barriers does not allow this, in general; here,S1,2(2) cannot
be issued unlessS0,3(2) is also issued (due to the presence of theBs). Unfortunately,
if both sends are issued, the (unfair) MPI runtime mayalwayspick S0,3(2). POE gets
around this problems by intercepting theSs and delaying their issue into the MPI run-
time as late as possible without breaking completes-before. In our example,POE will
collect (but not issue)S0,3(2), issue and complete the barrierB, andthen issue either
S0,3(2) or S1,2(2). Such dynamic reorderings are safe (guarantees non-overtaking).

Second,POE is capable of forcing specific matches to occur by rewritingR2,1(∗)
into R2,1(1) andR2,1(2), and issuing two “packets” (matchesin § 3) into the MPI run-
time, one containing{S1,2(2), R2,1(1)} and the other containing{S0,3(2), R2,1(0)}.
If we fire R2,1(∗) into the MPI runtime, we lose external control over which send will
match this wildcard receive.

3 MPI Semantics
The state of execution of an MPI program and its runtime is modeled using the triple
〈p, l, C〉. MPI program semantics is modeled through inference rules where the〈〈p, l, C〉〉
in the antecedent and consequent stands for〈p, l, C〉 ∈ ReachSet , whereReachSet is
the reached set of states. Changes top models instructions being consumed. Changes
to l models the PC advancing.C is a set of communication records modeling the MPI
runtime state. Forc ∈ C, c = 〈pid , op, blocking , src, dest , handle,match, cpl , buff 〉
wherepid ∈ PID, op ∈ OP , blocking ∈ Bool, src ∈ PID∗, dest ∈ PID,
handle ∈ H, match ⊆ H, and cpl , buff ∈ Bool (standing for “completed” and
“buffered.”) Figure 2 introduces fourprocess transitions(denotedP−) that model how
MPI instructions are issued. EachP− generates and adds one communication record
to C. Figure 3 introducesruntime transitions(denotedR−). TheR− help match and
complete the communication records by updating thematch andcpl fields. A run of
an MPI program is defined as any allowed sequence ofP− andR− transitions.POE
will be presented as ana prioritized execution of these transitions.
Definitions: Two transitionsmay be co-enabledif there is some state where both transi-
tions are enabled. Two transitions areindependentiff whenever they may be co-enabled

5

PS :
〈〈 p, l, C 〉〉, pi,li = Si,li(j)

〈〈 pi[li ←⊥], l[i← li + 1], C ∪ {〈i, Si,li(j), F,⊥, j,⊥, ∅, F, F 〉} 〉〉

PR :
〈〈 p, l, C 〉〉, pi,li = Ri,li(j)

〈〈 pi[li ←⊥], l[i← li + 1], C ∪ {〈i, Ri,li(j), F, j,⊥,⊥, ∅, F, F 〉} 〉〉

PW :
〈〈 p, l, C〉, pi,li = Wi,li(〈i, j 〉〉)

〈〈 pi[li ←⊥], l, C ∪ {〈i, Wi,li , T,⊥,⊥, 〈i, j〉, ∅, F, F 〉} 〉〉

PB :
〈〈 p, l, C 〉〉, pi,li = Bi,li

〈〈 pi[li ←⊥], l, C ∪ {〈i, Bi,li , T,⊥,⊥,⊥, ∅, F, F 〉} 〉〉

Fig. 2.MPI Process Transitions

in a state, (i) the firing of one does not disable the other, and (ii) the same state is attained
no matter which order they are fired in.
Process Transitions:Process transitions are defined through the inference rules in Fig-
ure 2.PS models the issue of aS (send) operation of processpi at PCli. The instruction
is consumed (modeled bypi[li ←⊥]), the PC advances (l[i ← li + 1]), and a commu-
nication record is added into the MPI runtime (nomatching receive is found yet,cpl
is false, andbuff is F). RulePR models the issuing of aspecific receive(R). The
issuing of a wildcard receive call can be similarly modeled (not shown). We can see
from PW andPB that theW or B function calls do not advance the PC. This helps
model the blocking behavior of these instructions. Since every process transitionpi,j

creates a communication record, we associate a communication record withci,j with
pi,j . A communication record is discarded only when itsmatch 6= ∅ and itscpl = T .
Otherwise, the communication record is considered to be alive. For example, a receive
must first bematchedwith a send and the receive operation iscompletedwhen the data
is transferred from send buffer to the receive buffer.
Runtime Transitions: Runtime transitions help define how transitions help complete
MPI operations. The relationcompletes-beforementioned on Page 5 will be defined as
CB = IntraCB ∪ InterCB , whereInterCB will be defined in Section 4. We now
defineIntraCB– the relation that defines how instructions within a process complete
(hence formalizing non-overtaking).

Definition 1. IntraCB is the smallest transitively closed subset ofC ×C s.t. forci,j ,
ci,k ∈ C wherej < k, 〈ci,j , ci,k〉 ∈ IntraCB whenever one of these hold:

1. ci,j .op = Si,j(l) and ci,k.op = Si,k(l) wherel ∈ PID
2. ci,j .op = Ri,j(l) and ci,k.op = Ri,k(l). wherel ∈ PID∗
3. ci,j .op = Ri,j(∗) and ci,k.op = Ri,k(l). wherel ∈ PID∗

2

4. ci,j .op = Si,j(l) and ci,k.op = Wi,k(〈i, j〉) wherel ∈ PID
5. ci,j .op = Ri,j(l) and ci,k.op = Wi,k(〈i, j〉) wherel ∈ PID∗
6. ci,j .op = Bi,j or ci,j .op = Wi,j

If 〈ci,j , ci,k〉 ∈ IntraCB, we say thatci,j is IntraCB predecessor ofci,k. Let
s.C denote the the set of communication records that are alive in states. We now
introduces.CR ⊆ s.C to denote theready set of communication records that can be
matched/completed:

2 This condition covers the case where the first receive is from any source, while the previous
case covers two receives from the same source.

6

Definition 2. Given a states = 〈p, l, C〉, ci,k ∈ s.C and ∀〈ci,j , ci,k〉 ∈ IntraCB,
s.CR = {ci,k | ci,k.buff = T ∨ (ci,k.match = ∅ ∧ ci,j .match 6= ∅) ∨

(ci,k.cpl = F ∧ ci,k.match 6= ∅)}

Let s.CM ⊆ s.CR be: s.CM = {c ∈ CR | c.match = ∅ ∧ c.buff = F}
s.CM is also called as co-enabled set of communication records. Basically,s.CM is the
set of communication records that have not yet matched, and are eligible for matching.
They eventually complete throughR− transitions, provided that theirIntraCB prede-
cessors have been matched. We can show that if〈ci,j , ci,k〉 ∈ IntraCB , then by the
MPI semanticsci,j ∈ s.CM ⇔ ci,k /∈ s.CM . That is,ci,j can never be co-enabled with
ci,k. We can now define MPI runtime transitions, as shown in Figure 3. We employ a
convenient notational abbreviation introduced through a simple example:

– For a sets and an itemx, let s + x denotes ∪ {x}.
– Let C : cx,i[match← @ + 〈y, j〉] stand for “the setC except that the membercx,i

in it has itsmatch component updated by the addition of〈y, j〉.” Here,@ stands
for cx,i.match (a notation inspired by TLA+).

RR :
〈〈 p, l, C 〉〉, cx,i, cy,j ∈ CM , cx,i.op = Rx,i(y), cy,j .op = Sy,j(x), y ∈ PID

〈〈 p, l, C : cx,i[match← @ + 〈y, j〉] 〉〉

RR∗ :
〈〈 p, l, C 〉〉, cx,i, cy,j ∈ s.CM , cx,i.op = Rx,i(∗), cy,j .op = Sy,j(x), y ∈ PID

〈〈 p, l, C : cx,i[match← @ + 〈y, j〉, src← y, op← R(y)] 〉〉

RS :
〈〈 p, l, C 〉〉, ci,j ∈ s.CM , ck,l ∈ s.CR, ci,j .op = Si,j(k), ck,l.op = Rk,l(i), ck,l.match = {〈i, j〉}

〈〈 p, l, C : ci,j [match← @ + 〈k, l〉, cpl← T] ck,l[cpl← T] 〉〉

RW :
〈〈 p, l, C 〉〉, ci,k ∈ s.CM , ci,k.op = Wi,k(〈i, j〉)

〈〈 p, l[i← li,k + 1], C : ci,k[match← @ + 〈i, k〉, cpl← T] 〉〉

RB :
〈〈 p, l, C 〉〉, C1 ⊆ s.CM , | C1 |=| PID | ∀ci,j ∈ C1 : ci,j .op = Bi,j

〈〈 p, l[i← li,j + 1], C : ∀ci,j ∈ C1 : ci,j [match← @ + 〈i, j〉, cpl← T] 〉〉

Fig. 3.MPI Runtime Transitions

Consider theRR transition as an example. It fires precisely when a specific receive
finds a matching send. ConsiderRR∗: it fires when a send targeting the process of this
receive is found. Notice that we set thesrc of this receive toy, thus modeling dynamic
rewriting of wildcard receives.
POE: The Hasse diagram given in Figure 4(a) defines how POE works by firing tran-
sitions from higher toward lower priority order (the arrows point towards lower priori-
ties). GivingRR∗ the lowest priority helps force the maximal set of sends to match a
wildcard receive (otherwise, theC1 condition [9] is violated). The proof of soundness
for POE algorithm is given in [3].

4 ThePOEMSE Algorithm
To model slack, we add the MPI runtime transition calledRSB shown in Figure 4(c)
when there is buffering available for a Send (anSb transition).RSB simply sets the
completion bit, as the system buffer can instantaneously absorb the message even before
a match is found. When a send in buffered, theW operation corresponding to the send

7

RR*

RR RB RS RW

P-

(a) POE

RR*

RR RB RS RW

RSB P-

(b) POEMSE

〈〈 p, l, C 〉〉, ci,j ∈ s.CR, ci,j .buff
〈〈 p, l, C : ci,j [cpl← T, buff ← F] 〉〉

(c) RSB Transition

Fig. 4.Prioritized Execution Orders forPOE andPOEMSE

turns into a no-op, and all communication records generated by it (including within
IntraCB) are removed. Figure 4(b) gives the priority execution order with theRSB
transition. In the MSE phase of POEMSE , the sends endowed with slack are fired as
per theRSB rule. To determine these sends, we need the notion ofInterCB which
establishes orderingsacrossprocesses, building overIntraCB, as now explained.

4.1 InterCB Edges and Path Properties

The theorems in this section are proven in our technical report [3].

Definition 3. Intra(ci,j) = {ci,k| 〈ci,j , ci,k〉 ∈ IntraCB}

Theorem 1. For ci,j , ck,l ∈ s.CM andci,j .op = Ri,j(∗) andck,l.op = Sk,l(i), for any
c ∈ Intra(ck,l), and for any states′, ci,j ∈ s′.CM ⇔ c /∈ s′.CM . That is, ifRi,j(∗) is
matchable withSk,l(i) and are co-enabled, then anIntraCB successor ofSk,l(i) can
never be co-enabled withRi,j(∗).

Theorem 2. For two communication recordsci,j , ck,l such thatci,j .op 6= Ri,j(∗) and
ck,l.op 6= Ri,j(∗), if 〈i, j〉 ∈ ck,l.matches then for allc ∈ Intra(ci,j) and any state
s′, c ∈ s′.CM ⇔ ck,l /∈ s′.CM .

The above theorems say that ifci,j , ck,l are co-enabled in some states, thenci,j and
any communication record inIntra(ck,l) can never be co-enabled. We defineInterCB
based on the above theorems.

Definition 4. InterCB is the smallest transitively closed subset ofC × C such that
for some states:

1. If ci,j , ck,l ∈ s.CM are such thatci,j .op = Ri,j(∗) and ck,l.op = Sk,l(i), then
∀c ∈ Intra(ck,l), 〈ci,j , c〉 ∈ InterCB.

2. For a communication recordci,j whereci,j .op 6= Wi,j(〈i, m〉),∀〈k, l〉 ∈ ci,j .matches,
∀c ∈ Intra(ck,l), we have〈ci,j , c〉 ∈ InterCB.

TheInterCB is constructed at the end of an interleaving.

Definition 5. For a set of communication recordsC, define
CB(C) = IntraCB(C) ∪ InterCB(C). A completes before graph for a given inter-
leaving (execution)s0, s1, . . . is CBG = (V,E) whereV = s0.C ∪ s1.C . . . ∪ sn.C,
andE = CB(V).

8

Co-enabledness:From Theorems 1, 2, we can show that if there is a path fromci,j to
ck,l in CBG, thenci,j andck,l can never be co-enabled.
Slack Introduction Illustration: Figure 5(a) is theCBG obtained for the MPI pro-
gram of Figure 1(a) for the interleaving generated by thePOE algorithm during the
initial slack-free execution. Here, the arrows within a process denotingIntraCB and
those across denotingInterCB . Notice thatall paths fromR2,1(∗) to S0,3(2) involve
W0,2(〈0, 1〉). Thus, if we renderW0,2(〈0, 1〉) into a no-op by firingS0,1(1) as anSb, the
dotted path is broken, makingS0,3(2) co-enabled withR2,1(∗), leading to a deadlock
as discussed. However, if there is some path that does not contain any waits associated
with a send, then introducing slack does not break such paths, as shown in Figure 5(b).
POEMSE avoids pursuing such unproductive slack introductions.

(a) Path that can be broken (b) Path that cannot be broken

Fig. 5.Example showing IntraCB, InterCB and Path

Minimal Wait sets: In the following, we assume thatci,j corresponds to wildcard re-
ceive andck,l corresponds to a potential matching send.

Definition 6. For a given communication recordc with c.op = W , onpath(c) is the
set of all simple paths ofCBG on whichc occurs.

Definition 7. Let π be the set of all simple paths ofCBG on whichci,j and ck,l both
appear. LetWall = {c | c.op = W (〈m,n〉) ∧ cm,n.op = Sm,n(. . .) ∧ cm,n.buff =
F ∧ ∃p ∈ π : p ∈ onpath(c)}. These are theWs which can be turned into a nop,
and they lie on somep ∈ π. A minimal wait setWmin is the set of waits such that
(i) Wmin ⊆ Wall, and (ii) for any pathp ∈ π, and for any two waitsw′ and w′′ in
Wmin, we havew′ ∈ p ⇔ w′′ /∈ p, and furthermore (iii)

⋃
x∈Wmin

onpath(x) = π.
That is, there is exactly one wait inWmin for any path betweenci,j andck,l, but that
all paths are covered by some (not necessarily distinct)W .

Theorem 3. Given a set of pathsπ betweenci,j andck,l, findingWmin is NP-Complete.

Proof. (Sketch; discussions near Definition 8) The reduction is from the monotone-
1-in-3 sat to our problem. The above problem is in NP. Given a certificateWc, we
can easily check that each path has exactly one wait inWc. A monotone-1-in-3 SAT

9

formula f is 3-CNF that has no negations and must be satisfied by assigning exactly
one literal in every clause to true. Given a formulaf , let v represent the set of variables
andc be the set of clauses.v representsWall. We construct a completes-before graph
CBG = (V,E) with V = v and for every clauseci = (xi ∨ xj ∨ xk), we add an edge
betweenxi, xj andxj , xk. That isxi → xj → xk forms a path in the graph. We also
markxi and source vertex andxk as sink vertex. A path consists of exactly one source
and one sink vertex. IfWmin exists for each of the paths, thenf can be made true by
assigning true to the variables corresponding to vertices inWmin and vice versa [3].

Theorem 4. Finding all the minimal wait sets is #P-Complete.

Proof. From Theorem 4, we have a P-time reduction from monotone 1-in-3 SAT to
minimal wait set problem. Also, the number of solutions to a formulaf is the same as
the number of minimal wait sets. So, finding all the minimal wait sets is #P-Complete.

Notes: In principle, |π| can be exponential, but in practice, it is small.Even so,our
complexity results show that we cannot avoid a cost that is exponential in|π| when
determining all minimal wait sets. This justifies the use of a subset construction method
for finding all minimal wait sets,MWS , as captured in Definition 8. While exponential,
it works well in practice. We also note that in some cases, we may be forced to pick
more than oneW per pathp. These correspond to SAT instances that are not 1-in-3
SAT. Definition 8 handles these situations also correctly [3].

Definition 8. Given a set of pathsπ betweenci,j andck,l, let Wall be the set of waits
which can be turned into a no-op. The minimal wait setsMWS = {Wmin ⊆ Wall}
are the family of set of waits such that for eachWmin ∈ MWS, turning all the waits
within Wmin disconnectsci,j andck,l, but no proper subset ofWmin has this property.

4.2 Minimal Slack Enumeration

We first provide an algorithm to computeMWS based on Definition 8. Given a set of
pathsπ betweenci,j andck,l, (i) take as input a set of pathsπ, (ii) determineWall,
(iii) build the powersetP(Wall), (iv) sort it by ascending cardinality, and (v) eliminate
from the powerset anysi such thatsi ⊃ sj , andsj itself disconnectsci,j andck,l. The
resulting powerset is theMWS (see [3] for a pseudo-code that definesMWS).

Recall that all these steps occur after the initial slack-free execution according to
POE. Now we must re-execute the MPI program being verified by buffering the sends
corresponding toMWS , and replaying the execution. We arrange for all this to occur by
(i) modeling the buffered sends asSb,3(ii) modeling the firing of theseSb throughRSB
(Figure 4(b)), and (iii) marking when theseRSB transitions must fire by maintaining
backtrack sets(idea inspired by [1]) as described by ourPOEMSE algorithm described
in Figure 4.2. Figure 4.2 gives a full description ofPOEMSE including the initial slack-
free execution and the later backtrack/replay forMSE .
In addition toCR andCM defined in§ 4, we add the following to every states:

– s.trans: Set ofP− or R− transitions.

3 In implementingPOEMSE, ISP implementsSb by providing ISP’s own buffer resources to
fake “ample buffering.” Therefore, ISP can be run on any machine and still simulate slack.

10

– s.backtrack: The set of transitions that must be executed from states in future
interleavings (replays).

– s.done: The set of transitions that have already been executed froms (initially ∅).
– s.curr: The transition executed from this state in the current interleaving.
– Given a transitiont, Proc(t) gives the set of processes involved in the transition

(e.g., R− transitions occur by matchingS andR of different processes).
– For transitiont, t.c is the set of all communication records involved int.

1: POEMSE(s0, statevec) {
2: statevec.push(s0);
3: t = GetHighestPriorityTransition(s.trans− s.done);
4: s0.backtrack = s0.backtrack ∪ {t};
5: while (!empty(statevec)) {
6: GenerateInterleaving(statevec);
7: CBG = GetCompletesBeforeGraph(statevec);
8: for (i = statevec.size()−1; i ≥ 0; i−−) {
9: s = statevec[i];

10: UpdateBacktrackSet(s, CBG);
11: }
12: for (i = statevec.size()−1; i ≥ 0; i−−) {
13: if (statevec[i].backtrack =∅) {
14: statevec[i].pop();
15: } else{
16: break;
17: }}}}

Fig. 6.Full POEMSE algorithm

Figure 4.2 shows the fullPOEMSE algorithm. The algorithm takes as input the initial
states0 andstatevec which is a partial state list. The algorithm first generates an inter-
leaving as shown in Figure 7. While generating the interleaving, the algorithm uses the
Hasse diagram in Figure 4(b) to determine the priority order among the transitions. The
functionExecute executes the transition and generates a next state as the result. Once
the interleaving is generated, the algorithm generates the completes-before graphCBG

as shown in line 5 of Figure 4.2. The algorithm now invokesUpdateBacktrackSet
for each state in the interleaving where thes.curr is anRR∗ transition.

UpdateBacktrackSet (Figure 8). takes theCBG and the states whose back-
track set must be updated. The only states considered are those involved in anRR∗
transition in the current interleaving with the receiveRi(∗). Line 3 checks if there is a
matching send co-enabled withci,j and adds it tos.backtrack. If there is some send
Sj(i) in CBG such thatSj(i) andRi(∗) are not co-enabled ins (line 7), the algorithm
(line8−32) finds all the pathsπ betweenRi(∗) andSj(i) in CBG. If there are no paths,
then it finds the transition involving processj in s.trans and adds it tos.backtrack.
Otherwise, all the transitions ins.trans are added tos.backtrack. However, ifπ 6= ∅
(lines15 − 32), the algorithm finds all the minimal wait setsminwaitsets (line 15).
If minwaitsets = ∅ then it is not possible forci,j andck,l to ever be co-enabled. The
algorithm returns in this case. Otherwise, it looks for the sends corresponding to waits
in minwaitsets available ins.CR and creates newRSB transitions for each of these
(line 24). One of these transitions are added to thes.backtrack (line 29). (Note that

11

eachp ∈ minwaitset corresponds to set of all sends that must be buffered at the same
time. In our implementation, the backtrack set is a set of sets and can execute multiple
independent transitions from a state. The algorithm in Figure 8, though correct, may
generate redundant interleavings). Ifs does not sends any sends inSmin, the backtrack
set is updated withs.trans (line 32). The soundness proof of POEMSE is given in [3].

5 Experimental Results, Concluding Remarks

Number of interleavings
(notice the extra yet necessary POEMSE POE
interleavings ofPOEMSE)

sendbuff.c 5 1
sendbuff-1a.c 2 (deadlocked) 1
sendbuff2.c 1 1
sendbuff3.c 6 1
sendbuff4.c 3 1
sendbuff5.c 1(deadlocked)1(deadlocked)
ParMETISb 2 1

Overhead ofPOEMSE on ParMetis
(runtime in seconds POEMSE POE

(x) denotes x interleavings)
ParMETIS (4procs) 20.9 (1) 20.5 (1)
ParMETIS (8procs) 93.4 (1) 92.6 (1)

ParMETIS∗ 18.2 (2) 18.7(2)
Table 1. Table 1. Experiment Results: ParMETISb is ParMETIS∗ with buffering.
ParMETIS∗ is ParMETIS modified to use wildcard receives.

1: GENERATEINTERLEAVING(statevec) {
2: s = statevec[0];
3: for (i = 0; i < statevec.size()−1; i++) {
4: s = Execute(statevec[i]. curr);
5: }
6: s.curr = GetHighestPriorityTransition(s.backtrack);
7: s.done = s.done ∪ {s.curr};
8: s.backtrack = s.backtrack − {s.curr}
9: while (s.trans− s.done 6= ∅) {

10: s = Execute(s.curr);
11: s.curr = GetHighestPriorityTransition(s.trans− s.done);
12: s.done = s.done ∪ {s.curr};
13: }}

Fig. 7.Algorithm to generate an Interleaving
We provide three classes of experimental results (Table 1). First we report vari-

ants of a contrived example calledsendbuff (see [3] for details) where we show
thatPOEMSE performs the minimal number of extra interleavings overPOE to ensure
soundness in the presence of slack. All of these examples exploresPOEMSE’s capa-
bilities to detect the different matchings as well as deadlocked situations. For each of
the sendbuff variant that we constructed, POE is only able to detect one possible match-
ing, whilePOEMSE allows severalIsend’s to buffer and thus discovers several more
interleavings. We also reproduced our example in Figure 1(a) as sendbuff-1a.c where
our algorithm indeed caught the deadlock at the second interleaving, whereS0,3(2) is

12

1: UPDATEBACKTRACK(s, CBG) {
2: ci,j .op = Ri,j(∗), ck,l.op = Sk,l(i)
3: if (ci,j ∈ s.curr.c ∧ ck,l ∈ s.CM ∧ ck,l /∈ s.curr.c) {
4: t = GetRR*Trans(ci,j , ck,l, s.trans);
5: s.backtrack = s.backtrack ∪ {t}
6: }
7: if (∃ck,l ∈ CBG : ck,l /∈ s.CM) {
8: π = FindAllPaths (ci,j , ck,l, CBG);
9: if (π = ∅) {

10: if (∃t ∈ s.trans ∧ j ∈ Proc(trans))
11: s.backtrack = s.backtrack ∪ {t};
12: else
13: s.backtrack = s.backtrack ∪ s.trans;
14: } else{
15: minwaitsets = MinimalWaitSets (π, Wall);
16: if (minwaitsets = ∅)
17: return ;
18: for each (p ∈ minwaitsets) {
19: Smin =GetSendsOfWaits (p);
20: rsbtrans = ∅;
21: if (Smin ∩ s.CR 6= ∅) {
22: for each (c ∈ Smin ∩ s.CR) {
23: c.buff = T ;
24: t = new RSBTrans(c);
25: s.trans = s.trans ∪ {t};
26: rsbtrans = rsbtrans ∪ {t};
27: }
28: if (rsbtrans 6= ∅) {
29: t = RandomSelect (rsbtrans);
30: s.backtrack = s.backtrack ∪ {t};
31: } else{
32: s.backtrack = s.backtrack ∪ s.trans;
33: }}}}

Fig. 8.Algorithm to update backtrack sets

matched withR2,1(∗). Next we study large realistic examples that show thatPOEMSE

adds virtually no overheads. We used ParMETIS, a hypergraph partition library (14K
LOC of MPI/C), as a benchmark for measuring the overhead ofPOEMSE (shown in
Table 1 as ParMETIS (xprocs) where x is the number of processes that we ran the
benchmarks with;ParMETIS∗ is a modified version where we rewrote a small part
of the algorithm using wildcardIrecv’s). In most of our benchmarks where no ad-
ditional interleavings are needed, the overhead is less than 3%, even in the presence of
wildcard receives, where the new algorithm has to run extra steps to make sure we have
covered all possible matchings in the presence of slack. Finally we study large examples
with contrived slack inelasticity situations inserted into them, which show that should
slack inelastic behaviors arise in practice,POE would (silently) behave unsoundly,
while POEMSE would (silently, and with minimal overheads) introduce the necessary
re-executions, with certain (minimally chosen) sends endowed with slack that certainly
introduce new behaviors, including potentially buggy ones. This is reflected in Table 1
asParMETIS b∗ where we rewrote the algorithm of ParMETIS again, this time not
only to introduce wildcard receives, but also to allow the possibility of a different or-

13

der of matching that can only be discovered by allowing some certainIsend’s to be
buffered. Our experiment shows thatPOEMSE successfully discovered the alternative
matching during the second interleaving. So far, we have never encountered practical
examples that are slack inelastic. However, the very purpose of a tool such as ISP in-
corporatingPOEMSE is to keep the user worry-free about soundness when verifying
thousands of large programs.

In conclusion, we provide the first known approach to verify slack inelastic pro-
grams dynamically, while avoiding the naı̈ve approach of considering every send with-
/without slack. To model MPI’s action co-enabledness relation that is governed by
MPI’s weak ordering semantics and slack, we define a formal semantics for MPI that
delicately separating out the notions ofcompletionandmatchingof MPI communica-
tions. We then define the notion of completes-before paths, and show that two MPI ac-
tions separated by such a path not co-enabled. Then we show that slack addition to MPI
sends turn the associated wait operations into no ops. If these waits lie on completes-
before paths, these paths are broken, thus adding more sends that can match a wildcard
receive. We show the complexity of optimally determining minimal slack enumeration.
Finally we present ourPOEMSE algorithm integratingMSE andPOE.

We are releasing a full-fledged version of ISP implementingMSE that runs on Unix,
Mac, and Windows VisualStudio, and comes with over 120 medium-to-large examples,
and full install scripts at our web site [3]. In future, we will closely examine whether
we can avoid the step in line 33 of Figure 8, and also whether static analysis methods
may save some effort duringMSE .

References

1. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In J. Palsberg and M. Abadi, editors,POPL, 110–121. ACM, 2005.

2. R. Manohar and A. Martin. lack Elasticity in Concurrent Computing. In Intl. Conf. on the
Mathematics of Program Construction,Lecture Notes in Computer Science1422.

3. S. Vakkalanka et al., Dynamic Reduction based Verification of Slack Inelastic Mes-
sage Passing Systems,http://www.cs.utah.edu/formal_verification/
cav09-slack.html

4. S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby. Dynamic verification of MPI pro-
grams with reductions in presence of split operations and relaxed orderings. In A. Gupta and
S. Malik, editors,CAV, Springer LNCS 5123, 66–79, 2008.

5. S. V. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey of MPI related debuggers
and tools. UUCS-07-015,http://www.cs.utah.edu/research/techreports.
shtml .

6. A. Vo, S. Vakkalanka, G. Gopalakrishnan, R.M. Kirby. Formal Verification of Practical MPI
Programs. In: PPoPP (2009) to appear.

7. S. F. Siegel and G. S. Avrunin. Analysis of MPI Programs. Technical ReportUM-CS-2003-
036, Department of Computer Science, University of Massachusetts, 2003.

8. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standard.Parallel Computing, 22(6):789–828, 1996.

9. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, Dec. 1999.
10. G. Karypis. METIS and ParMETIS. http://glaros.dtc.umn.edu/gkhome/views/metis.
11. M. Musuvathi and S. Qadeer. Fair stateless model checking. In PLDI ’08 362–371, New

York, NY, USA, 2008. ACM.

14

http://www.cs.utah.edu/formal_verification/cav09-slack.html
http://www.cs.utah.edu/formal_verification/cav09-slack.html
http://www.cs.utah.edu/research/techreports.shtml
http://www.cs.utah.edu/research/techreports.shtml

12. P. Godefroid, B. Hanmer, and L. Jagadeesan. Systematic software testing using VeriSoft: An
analysis of the 4ess heart-beat monitor.Bell Labs Technical Journal, 3(2), April-June 1998.

13. Rupak Majumdar, Koushik Sen: Hybrid Concolic Testing. ICSE 2007: 416-426
14. http://www.multicore-association.org

15

http://www.multicore-association.org

	Dynamic Reduction based Verification of Slack Inelastic Message Passing Systems

