Ray tracing for the movie ‘Cars’

Per Christensen
Pixar Animation Studios
Ayia Napa Seminar, June 2006

Cars challenges

• Animation: cars that move, talk, “think”
• Rendering:
 - geometric complexity
 - ray tracing: reflections, shadows, ambient occlusion

Overview

• Why ray tracing?
• How to deal with overwhelming complexity?
• Examples

Why ray tracing for Cars?

• All previous Pixar movies were rendered with scanline rendering (shadow maps, reflection maps, …)
• But cars are very shiny + reflective!
• Shadows; ambient occlusion
• We were adding ray tracing to RenderMan anyway

Why ray tracing?

Environment map
Ray-traced reflections

Why ray tracing?

Ray-traced shadows (shadow maps hard)

An irradiance atlas ...Ray tracing for Cars
Why ray tracing?

Ray tracing effects: summary

Ray tracing is easy – or is it?

Typical scene at Pixar

Rendering requirements

Scanline rendering (Reyes)

An irradiance atlas ...Ray tracing for Cars
An irradiance atlas ... Ray tracing for Cars

Ray tracing
- Advantages:
 - Interreflections
 - Fine shadow details
 - Ambient occlusion
- Disadvantage: rays fly all over the scene
 - Needs all objects+textures all the time
 - Can not deal with very complex scenes

Goal: best of both
- Ray tracing
 - Very complex scenes (as scanline)
 - So: augment RenderMan’s Reyes scanline with ray tracing

Main question
- Some rays fly all over
- Some rays require high geometric / texture precision
- But not all rays fly all over and require high precision!
- Which rays require which precision?

Ray differentials to the rescue
- Keep track of differences between “neighbor” rays
 - Trace rays; each ray represents a beam [Igehy 1999]

Ray differentials and ray beam
- “Narrow ray”: ray beam cross-section is small
- “Wide ray”: ray beam cross-section is large

Ray differentials: use
Ray differentials tell us:
- Required tessellation rate of geometry
 - Quad sizes ~ ray beam cross-section
- Required texture resolution
 - Pixel sizes ~ ray beam projected onto surface
Multi-resolution geometry cache

- Split objects into patches (as usual)
- Tessellate each patch on demand
- Use ray width to determine which tessellation to use:
 - 1 quad
 - 4x4 quads
 - 16x16 quads

Parking lot: cache stats

- 1 billion geometry cache lookups
- No cache: run time > 4 days
- Single-resolution cache:
 - hit rate 97.7%
 - run time: 11 hours
- Multi-resolution cache:
 - hit rate 99.9%
 - run time: 6 hours

Example: parking lot

- 15 cars; 240M quads; 80M rays

Example: 94 dragons

- 94 dragons; 3MB multi-res. cache performs well – less than 1/200 of the fully tessellated scene
- Single-res. vs. multi-res. geometry cache:
 - 1MB multi-res. cache beats 100MB single-res. cache (#recomputed vertices)

Example: 94 dragons

- Displacements
- Textures
- Sharp shadows
- Mirror reflection
An irradiance atlas ... Ray tracing for Cars

Final car images ...

Movie time

More information ...

• Book: Advanced RenderMan

• “Ray differentials and multiresolution geometry caching for distribution ray tracing in complex scenes”, Eurographics 2003
Conclusion (part 1)
- Use multi-resolution geometry cache
- Use multi-resolution texture cache
- Use ray differentials to select resolution

Conclusion (part 2)
- Result: Can now ray trace production scenes – same complexity as scanline!
- Was used extensively in the rendering of Cars movie
- Also used by other studios

Acknowledgments
Thanks to:
- Pixar + RenderMan team
- You for listening

Questions?